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Preface

Components used in mechanical engineering usually have to bear high me-
chanical loads. It is, thus, of considerable importance for students of mechan-
ical engineering and materials science to thoroughly study the mechanical
behaviour of materials. There are different approaches to this subject: The en-
gineer is mainly interested in design rules to dimension components, whereas
materials science usually focuses on the physical processes in the material
occurring during mechanical loading. Ultimately, however, both aspects are
important in practice. Without a clear understanding of the mechanisms of
deformation in the material, the engineer might uncritically apply design rules
and thus cause ‘unexpected’ failure of components. On the other hand, all the-
oretical knowledge is practically useless if the gap to practical application is
not closed.

Our objective in writing this book is to help in solving this problem. For
this reason, the topics covered range from the treatment of the mechanisms
of deformation under mechanical loads to the engineering practice in dimen-
sioning components. To meet the needs of modern engineering, which is more
than ever characterised by the use of all classes of materials, we also needed to
discuss the peculiarities of metals, ceramics, polymers, and composites. This is
reflected in the structure of the book. On the one hand, there are some chap-
ters dealing with the different types of mechanical loading common to several
classes of materials (Chapter 2, elastic behaviour; Chapter 3, plasticity and
failure; Chapter 4, notches; Chapter 5, fracture mechanics; Chapter 10, fa-
tigue; Chapter 11, creep). The specifics of the mechanical behaviour of the
different material classes that are due to their structure and the resulting mi-
crostructural processes are treated in separate chapters (Chapter 6, metals;
Chapter 7, ceramics; Chapter 8, polymers; Chapter 9, composites).

In this book, we thus aim to comprehensively cover the mechanical be-
haviour of materials. It addresses students of mechanical engineering and ma-
terials science as well as practising engineers working on the design of compo-
nents. Although the book contains an in-depth treatment of the mechanical
behaviour and is thus not to be considered as an introduction, all topics can
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VIII Preface

be understood without much previous knowledge of material physics and me-
chanics. To make it more accessible, the book starts with an introductory
chapter on the structure of materials and contains appendices on tensors,
crystal orientation, and thermodynamics.

In many cases, we thought it desirable to cover some topics in greater depth

for those readers with a special interest in the subject matter. These sections

can be skipped without compromising the understanding of other subjects.

These advanced sections are indented, as here, or, in the case of longer

sections, marked with a ∗ on the section number.

At the end of the main part, the reader can find some exercises with complete
solutions. They serve as numerical examples for the topics covered in the text
and enable the reader to check their understanding of the subject.

This book has evolved from lectures at the Technical University of
Braunschweig on the mechanical behaviour of materials, aimed at graduate
students, and was first published in German by the Teubner Verlag, Wies-
baden. Due to its success and many encouraging remarks from readers, it
seemed worthwhile to prepare an English edition of the book. In doing so,
the nomenclature and some of the references were adapted to improve the
usability of the book for English readers.

We wish to thank Günter Lange who provided valuable help in prepar-
ing this book. Furthermore, we want to thank Jürgen Huber (CeramTec ag),
Dr. Peter Neumann (Max-Planck-Institut für Eisenforschung GmbH), Volker
Saß (ThyssenKrupp Nirosta GmbH), Johannes Stoiber (Allianz-Zentrum für
Technik GmbH), the Lufthansa Technik ag, the Institut für Werkstofftech-
nik of the Universität Gh Kassel, the Institut für Füge- und Schweißtechnik
of the Technische Universität Braunschweig, the Institut für Baustoffe, Mas-
sivbau und Brandschutz of the Technische Universität Braunschweig, and all
members of the Institut für Werkstoffe. Steffen Müller has made a signifi-
cant contribution to the lecture notes that were the starting point for writing
this book. Furthermore, we want to thank Allister James and Gary Merrill
who proofread parts of the manuscript. We are also indebted to many read-
ers who sent book evaluations to the Teubner Verlag that have been helpful
in preparing the second German edition [123]. The Teubner Verlag kindly
gave the permission to publish an English translation. We finally want to
thank the Springer publishing company for the cooperation in preparing this
edition.

Braunschweig, Joachim Rösler
Mülheim an der Ruhr, Harald Harders
May 2007 Martin Bäker
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The structure of materials

There is a vast multitude of materials with strongly differing properties. A
copper wire, for instance, can be bent easily into a new shape, whereas a
rubber band will snap back to its initial form after deformation, while the
attempt to bend a glass tube ends with fracture of the tube. The strongly
differing properties are reflected in the application of engineering materials –
you would neither want to build cars of glass nor rubber bridges. The mul-
titude of materials enables the engineer to select the best-suited one for any
particular component. For this, however, it is frequently necessary not only to
know the mechanical properties of the materials, but also to understand the
physical phenomena causing them.

The mechanical properties of materials are determined by their atomic
structure. To understand these properties, some knowledge of the structure of
materials is therefore required. This is the topic covered in this chapter. The
structure of materials is investigated by solid state physics, but to understand
the mechanical properties, it is not necessary to understand the more arcane
aspects of this discipline as they can usually be explained with rather simple
models.

This chapter starts with a short explanation of the basic principles of
atomic structure and the nature of the chemical bond. Afterwards, the three
main groups of materials, metals, ceramics, and polymers, are discussed. The
most important characteristics of their interatomic bonds are covered, and
the microscopic structure of the different groups is also treated.

For a more thorough introduction into the structure of materials the books
by Beiser [17] and Podesta [110] are recommended.

1.1 Atomic structure and the chemical bond

Atoms consist of a positively charged nucleus surrounded by negatively
charged electrons. Almost the complete mass of the atom is concentrated
in the nucleus because it comprises heavy elementary particles, the protons
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(a) s orbital (b) p orbitals

(c) d orbitals

Fig. 1.1. Sketch of selected electron orbitals

and neutrons. The number of positively charged protons within the nucleus
determines the atomic number and thus the chemical element. Thus hydrogen,
containing one proton in the nucleus, has an atomic number of 1, oxygen an
atomic number of 8, and iron of 26. The nucleus is not involved in chemical
reactions which are governed by the electrons surrounding it.

The electrons of an atom are not arranged in an arbitrary configuration.
Instead, they are confined to so-called electron shells that are arranged in
increasing distance around the nucleus and that can only contain a limited
number of electrons. The further away an electron shell is from the nucleus,
the higher is the energy of the electrons in this shell so that electrons on the
outer shells are more weakly bound to the nucleus than those on the inner
ones.

In general, it is not possible to localise electrons at a certain point i. e.,
their position is not defined. It is only possible to know the probability that
an electron is situated at a certain point if one tries to find it there. This
probability varies in space, so there are some regions near the nucleus where
the electron will be located preferentially, whereas it avoids others. The region
where the electron can be found is called the orbital. Figure 1.1 shows some
examples of such orbitals. As can be seen from the figure, orbitals can be
spherically symmetric or directed. An electron shell usually comprises several
orbitals. Each orbital can be occupied by no more than two electrons (Pauli
exclusion principle).

The basic structure of all electron shells is the same in all atoms. The
innermost shell, called K shell, can contain at most two electrons because
there is only one, spherically symmetric, orbital (the s orbital) in it. The next
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Table 1.1. Electron configurations of selected elements

K L M N
1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

1 H 1
2 He 2
3 Li 2 1
4 Be 2 2
5 B 2 2 1
6 C 2 2 2
7 C 2 2 3
8 O 2 2 4
9 F 2 2 5

10 Ne 2 2 6
11 Na 2 2 6 1
17 Cl 2 2 6 2 5
19 K 2 2 6 2 6 1
20 Ca 2 2 6 2 6 2
21 Sc 2 2 6 2 6 1 2
22 Ti 2 2 6 2 6 2 2
26 Fe 2 2 6 2 6 6 2
28 Ni 2 2 6 2 6 8 2
29 Cu 2 2 6 2 6 10 1
30 Zn 2 2 6 2 6 10 2

shell, the L shell, can be occupied by up to eight electrons. Two of these are
situated in a spherically symmetric s orbital, whereas the other six occupy
directed orbitals, the three p orbitals. The subsequent M shell offers space
to 18 electrons in s, p, and d orbitals.1 As nature tends to states of lowest
energy, these shells will be filled in the atoms starting with the innermost
one, until the number of electrons equals the atomic number so that the atom
is electrically neutral. Table 1.1 shows the electron configurations of several
atoms.

As the energy of the electrons is higher on the outer shells than on the
inner ones, it is only the electrons on these shells that are involved in chemical
reactions. The binding energy of the weakest bound electron is called the
ionisation energy because when the electron is removed a positively charged
ion remains. Thus, the ionisation energy is a measure of the binding strength
of an electron in the outermost shell.

The ionisation energy of an atom is particularly high if the outermost shell
is fully occupied.2 Fully occupied electron shells are energetically favourable
so that atoms tend to attain configurations with completely filled outermost
1 In general the number k of electrons in the nth shell is given by k = 2n2.
2 Due to their higher binding energy, the inner electrons are never involved in

chemical reactions. They, however, do play a role in the generation of X rays.
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shell. This explains why noble gases are almost completely chemically inert,
why fluorine, lacking only one electron to fill its outer shell, has a high electron
affinity, and why, on the other hand, an element like sodium, with only one
electron on the outer shell, has a low ionisation energy.

A chemical bond between atoms is formed by several atoms ‘sharing’ their
electrons, or by one atom completely transferring electrons to another to
achieve a favourable electron configuration. Hydrogen, for instance, with only
one electron on the K shell needs another electron to fill this shell. Therefore,
two hydrogen atoms can bond with each other and share their electrons. A
hydrogen molecule H2 is formed. In this, rather simplified, picture of the chem-
ical bond, each atom can form as many bonds as there are electrons missing
on the outermost shell. This type of bond is called covalent and will be de-
scribed in section 1.3.1. The number of bonds formed by an atom is called its
valency. So fluorine has a valency of 1, oxygen of 2, and carbon of 4.3

The valency model of the elements can explain many chemical compounds,
but not all of them. A simple example shows the limitations of the model:
If a hydrogen molecule is ionised, the resulting molecule has the chemical
formula H+

2 . Both hydrogen nuclei share a single electron although neither
of them obtains a full outer shell in this way. Nevertheless, the H+

2 molecule
has a rather large binding energy and does not dissociate into a proton and
a hydrogen atom. This is caused by a special property of electrons: electrons
tend to occupy states in which they can spread over a region with the largest
possible extension. The more an electron is confined to a small region, the
higher its energy becomes. For the electron, it is therefore favourable to stay
simultaneously at both hydrogen nuclei, for this reduces its energy.

This property of the electrons also explains why electrons do not fall into
the nucleus. According to the rules of classical physics, it should be expected
that an electron orbiting a proton minimises its energy by being as close
to the proton as possible because both particles attract each other strongly.
However, the closer the electron is to the proton, the more does its energy
increase because it is more and more confined. These two effects with opposing
signs lead to a minimisation of the electron energy at a certain distance to
the nucleus. As we will see in the next section, this principle determines the
physical properties of metals.

The chemical bond between two atoms causes an attraction between them.
If they get too close, the electrostatic repulsion of the electron shells causes a
repulsive force. Another repulsive effect comes about because the size of the
orbitals reduces when they approach, which, as explained, is energetically un-
favourable. An equilibrium distance is reached where the energy is minimised
3 The valency of elements whose outer shell is less than half occupied is given not

by the number of missing electrons but by the number of electrons present. Thus,
sodium has a valency of 1, magnesium of 2. The situation is more complicated
with the transition metals. Iron, for instance, can react with oxygen to form either
FeO (valency 2) or Fe2O3 (valency 3).
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and there is no net force on the atoms (see section 2.3). Typically, atomic
distances of covalent bonds are between 0.1 nm and 0.3 nm.

Depending on the elements forming the bond, different types of bonds with
distinctly different properties can be formed. These types will be discussed in
the next sections together with those material classes they are typical of.

1.2 Metals

Metals are an especially important class of materials. They are distinguished
by several special properties, namely their high thermal and electrical con-
ductivity, their ductility (i. e., their ability to be heavily deformed without
breaking), and the characteristic lustre of their surfaces. Their ductility, to-
gether with the high strength4 that can be achieved by alloying, renders metals
particularly attractive as engineering materials.

In nature, metals occur only seldom as they possess a high tendency for
oxidation. If one looks at the pure elements, more than two thirds of them
are in a metallic state. Many elements are soluble in metals in the solid state
and thus allow to form a metallic alloy. For instance, steels can be produced
by alloying iron with carbon. The large number of metallic elements offers a
broad range of possible alloys. Of most technical importance are alloys based
on iron (steels and cast irons), aluminium, copper (bronzes and brasses), nickel,
titanium, and magnesium.

In this section, we start by explaining the nature of the chemical bond
of metals. We will see that metals usually arrange themselves in a regular,
crystalline order. Therefore, we will afterwards discuss the structure of crystals
and, finally, explain how a metallic material is composed of such crystals.

1.2.1 Metallic bond

A look at the periodic table shows that metals are distinguished by possessing
rather few electrons on their outer shell (figure 1.2) and thus would need a
large number of electrons to fill this shell. On the other hand, they have the
possibility to achieve a fully occupied outer shell by dispensing with their
outer electrons. The ionisation energy of metals is, therefore, rather small.

Due to the small number of outer electrons, the metallic bond cannot be
based on several atoms sharing their electrons to achieve a full outer shell.
That, nevertheless, a bond forms is due to the property of electrons to tend
to spread over as large a region as possible, as discussed above in the context
of the H+

2 molecule.
How this can lead to the formation of a metal can be explained most easily

using an example: Lithium is an alkali metal with only one electron on the
4 The strength of a material is defined by the load it can withstand without failure.

This will be discussed in section 3.2
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transition metals
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Fig. 1.2. Periodic table of the elements excluding lanthanides (atomic numbers 58
to 71) and actinides (atomic numbers 90 to 103). The crystal structures will be
explained below.
Semi-metals have bonds of a mixed covalent-metallic type. Some materials exhibit
different crystal structures depending on the temperature [10,84]

outermost shell, thus offering seven unoccupied sites for other electrons. If
two lithium atoms approach, both outer electrons, the valence electrons, of
the atoms can occupy the space around both atoms and can thus reduce their
energy. This is similar to the formation of the H+

2 molecule discussed above. If
a third lithium atom is added, this atom can also spread out its electron over
all three atoms, thus forming a Li3 molecule. A further lithium atom can also
add its electron to the mix. Finally, a structure is formed in which each lithium
atom is surrounded by eight nearest neighbours and shares its electrons with
them. Each bond between two lithium atoms contains on average one quarter
of an electron. The bond between the electrons is caused by the spreading of
the electrons.

This spreading of the electrons makes it impossible to assign the electrons
to the atoms they originally belonged to. The electrons spread over the whole
material so that on average one electron is always close to any lithium atom,5
but this electron is not stationary and can move about freely. This is the
reason why it is often said that the atoms release their electrons to a common
5 The inner electrons of course always stay close to their lithium atoms and are not

considered in this discussion.
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electron gas, resulting in positively charged metallic ions surrounded by a ‘gas’
of negatively charged electrons.6

The mobility of the electrons within the electron gas explains many of
the physical properties of metals because the excellent electrical and thermal
conductivity are based on it. The shininess of metals is also caused by it, for
the electrons can easily vibrate in an oscillating electromagnetical field (e. g.,
light) and thus bar it from entering the metal [47,110].

As the metallic bond does not result in a fully occupied shell of the single
atoms, it is weaker than other types of bond. The binding energy of a metallic
bond between any two atoms takes values between approximately 0.1 eV and
0.3 eV.7 On the other hand, each atom in a metal has a relatively large number
of nearest neighbours so that in total relatively large binding energies result,
for example 1.1 eV for sodium and 3.5 eV for copper. As the binding energies
are lower than in ceramics, which possess fully occupied outer shells, the
melting temperature of metals is usually lower as well.

The distribution of the electrons over a large region leads to a slow decrease
of the interatomic force with the distance of the atoms compared to other types
of bonds. Because it is thus possible to displace single atoms with a rather
small amount of energy, metals can be easily deformed plastically. If some
metal atoms are replaced by those of another metallic element, the metallic
bond is usually not destroyed because, for the bond, it is mainly relevant that
electrons are released to the electron gas. This explains why it is possible to
alloy metals in many different compositions.

How exactly the mechanical properties of metals are determined by the
metallic bond will be discussed in detail in chapters 2 and 6.

1.2.2 Crystal structures

As we learned in the previous section, atoms in a metallic solid arrange them-
selves so that their electrons can spread over many atoms. This spreading is
most easy if the atoms are arranged in a dense and regular manner. Therefore,
metals form crystals which are distinguished by their well-ordered structure.
To understand the different types of crystal structures found in nature, it is
useful to think rather generally about the problem of arranging objects.
6 This picture of an electron gas is suitable to describe many properties of metals

correctly. Its main drawback is that in this picture the metallic bond seems to
be completely different from a covalent bond. This, however, is not true as there
are intermediate states between these two types, occurring in the so-called semi-
metals.

7 Atomic energies are frequently measured in the unit electron volt (eV). 1 eV
corresponds to an energy of 1.602× 10−19 J. In chemistry, energies are frequently
calculated per mole: 1 eV ≈ 105 kJ/mol.
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Fig. 1.3. Simple cubic crystal structure

Mathematically, a crystal can be considered as a three-dimensional ar-
rangement of points (i. e., a lattice of points) that looks identical from each of
the points. In a real-world crystal each of these points will be occupied by an
atom8. The crystal has a regular, periodic structure that repeats itself exactly.
It thus not only possesses a short-range order, but also a long-range order, for
the structure of even a remotely distant region can be predicted exactly from
each point. Figure 1.3 shows a simple cubic crystal as an example. The crystal
can be visualised as consisting of cubes that all look alike. These cubes are
the ‘building blocks’ from which the crystal can be constructed by putting
them together. These building blocks are called unit cells. Unit cells cannot
have arbitrary shapes. As the crystal has to be built from them without gaps,
only such unit cells can form a crystal that can completely fill space.

Altogether, there are 14 different possibilities to arrange atoms on a lattice
so that the lattice looks the same from each lattice point. These are called
Bravais lattices, named for their discoverer, Auguste Bravais. Their unit cells
are depicted in figure 1.4. For instance, the simple orthorhombic and the
simple cubic lattice differ in the orthorhombic unit cell being a quadrangular
prism with differing edge lengths, whereas the unit cell of the cubic lattice is
a cube. The geometry of the different crystal types will be explained in more
detail below.

Some of the 14 Bravais lattices are very similar. The simple cubic and the
body-centred cubic lattice differ only in the additional atom that is situated
in the centre of the unit cell. Such similarities can be described using the
symmetries of a crystal. A symmetry of an object is defined as an operation
that leaves the object unchanged. The simple cubic crystal structure shown
in figure 1.3, for example, remains unchanged when it is rotated by 90° along
one of its edges, by 120° along the cube diagonal, or if it is reflected using
any of the mid-planes of the cube as mirror plane. All crystal types possessing
the same symmetries with respect to rotations and reflections as this cubic
crystal are grouped into the same crystal system, the cubic crystal system.
Although the body-centred cubic, the face-centred cubic and the simple cubic
8 Sometimes more than one atom may form a lattice point, see section 1.3.6.
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(a) Triclinic (b) Rhombohedral (c) Hexagonal

(d) Simple
monoclinic

(e) Base-centred
monoclinic

(f) Simple
tetragonal

(g) Body-centred
tetragonal

(h) Simple
orthorhombic

(i) Base-centred
orthorhombic

(j) Body-centred
orthorhombic

(k) Face-centred
orthorhombic

(l) Simple cubic (m) Body-centred
cubic

(n) Face-centred
cubic

Fig. 1.4. The unit cells of the 14 Bravais lattices

lattice differ in the arrangement of their atoms, they all possess the same cubic
symmetry.

The 14 Bravais lattices can be grouped into seven crystal systems accord-
ing to their symmetry as listed in table 1.2. Generally, each crystal system
is characterised by six numbers: three lattice constants, indicating the edge
lengths of the three axes making up the unit cell, and the three angles between
these axes. Typical values of the lattice constant in metals are between 0.2 nm
and 0.6 nm.

The symmetry of a crystal type is relevant because frequently it is reflected
in its material properties. A cubic crystal, for instance, has the corresponding
symmetries in its mechanical properties. The lower the symmetry of a crystal,
the more complicated is the anisotropy of its properties. This will be discussed
in chapter 2, using the elastic properties as an example.
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Table 1.2. The seven crystal systems

name lattice- lattice angle
®¯

°a b

c

constants

triclinic a 6= b 6= c α 6= β 6= γ

monoclinic a 6= b 6= c α = γ = 90° 6= β

orthorhombic a 6= b 6= c α = β = γ = 90°

hexagonal a = b 6= c α = β = 90°, γ = 120°

tetragonal a = b 6= c α = β = γ = 90°

rhombohedral a = b = c α = β = γ 6= 90°

cubic a = b = c α = β = γ = 90°

In metals, three lattice structures are especially frequent. Two of these are
Bravais lattices with cubic symmetry:

• face-centred cubic (figures 1.4(n) and 1.5(a), abbreviated fcc),9
• body-centred cubic (figures 1.4(m) and 1.5(b), abbreviated bcc).

The third important crystal structure of metals is the hexagonal close-
packed structure, abbreviated hcp. This structure is not a Bravais lattice as
not all atoms occupy identical positions. Looking at figure 1.6, it can be seen
that the atom at the front right edge of the cell has a neighbour that can be
9 In the periodic table of the elements, figure 1.2, the crystal structures of the

elements are listed.
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(a) Face-centred cubic (b) Body-centred cubic

Fig. 1.5. A sphere model of the cubic crystals

a

c

(a) Lattice representation (b) Sphere model

Fig. 1.6. The hexagonal close-packed structure

reached by moving up by c/2 and to the left and back by a/
√

3. If this step
is repeated from the atom reached in this way, there is no atom at the new
position. The hexagonal close-packed lattice can be constructed by stacking
two simple hexagonal lattices into each other. Such lattices are called lattices
with a basis and will be discussed further in section 1.3.6.

A special unit cell of a crystal is the primitive unit cell, defined as the
smallest unit cell from which the crystal can be built. As visualised in fig-
ure 1.7, the primitive unit cell is not uniquely defined but can be chosen in
different ways. However, all possible primitive unit cells obviously have the
same volume. One primitive unit cell of a body-centred cubic lattice is shown
in figure 1.8. This cell is only part of the cube that one usually visualises
when putting together the crystal lattice. As the crystal symmetries are less
obvious when using this cell, frequently the cubic unit cell is used instead,
called conventional unit cell. It is easy to determine whether a unit cell of a
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Fig. 1.7. Different unit cells of the same lattice structure in two dimensions (af-
ter [10])

Fig. 1.8. Body-centred cubic lattice, primitive unit cell (thick
lines) and conventional unit cell (thin lines). Both cells are
centred on one atom

Bravais lattice is primitive: If it contains only one atom, it is primitive; if it
contains more, it is not. While counting the atoms it has to be kept in mind to
count only the appropriate fractions of those atoms occupying more than one
cell. For instance, the conventional unit cell of the body-centred cubic lattice
contains two atoms and is therefore not primitive, the conventional unit cell
of the face-centred cubic lattice contains four atoms and is thus not primitive
either.

Two important properties of a crystal lattice are its coordination number
and its relative density. As explained above, metals arrange their atoms in crys-
tal structures because this enables them to share their electrons with many
other atoms. Therefore, it is favourable if they have a large number of near-
est neighbours. This number of nearest neighbours is called the coordination
number of the crystal. The coordination number is twelve in a face-centred
cubic and a hexagonal close-packed crystal, eight in a body-centred cubic
crystal, and only six in a simple cubic crystal. If we imagine the atoms to
be spheres touching each other, they fill up a certain fraction of space. This
fraction, called the relative density, takes its maximum value of 74% in the
face-centred cubic and the hexagonal close-packed lattice (see exercise 1).10
Figures 1.5 and 1.6(b) use sphere models to illustrate the relative density. As
can be seen, the size of the interatomic gaps is larger in the body-centred
cubic than in the face-centred cubic or hexagonal close-packed lattice.
10 It is impossible to pack spheres of equal size with a higher relative density than

in the fcc and hcp structure. This has been conjectured by Johannes Kepler in
1611, but it was proven only in 1999 by Hales und Ferguson, using the power of
modern computer algebra [136].
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⇒ ⇒

(a) Hexagonal close-packed lattice

⇒ ⇒

(b) Face-centred cubic lattice

Fig. 1.9. Construction of the hexagonal close-packed and the face-centred cubic
lattice by stacking close-packed layers of spheres. The structures differ in their stack-
ing sequence: In the hexagonal close-packed structure spheres in the third layer are
placed perpendicularly above those in the first, in the face-centred cubic lattice the
spheres are offset

The hexagonal close-packed and the face-centred cubic lattice are both
close-packed structures. They differ in the arrangement of atoms. This can
be visualised using the stacking sequence as shown in figure 1.9. We start by
arranging spheres in a close-packed way in the plane so that each sphere has
six nearest neighbours. If we stack another layer of spheres onto this plane,
only every second gap is occupied. When stacking a third layer onto the second,
there are two different possibilities: If the spheres are placed directly above
those in the first plane, the hexagonal close-packed structure results; if they
are placed in the other gaps not directly over the spheres in the first plane,
we get the face-centred cubic structure.

To be able to discuss the properties of crystalline materials, it is frequently
necessary to uniquely identify directions within the crystal. This is done using
Miller indices as explained in detail in appendix B.

More complicated crystal structures than those described so far may result
if the crystal is made up of different elements. As this is most frequently the
case in ceramics, it will be dealt with in section 1.3.6.
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(a) Micrograph (optical microscope) (b) Microstructure of a nickel-base alloy
(scanning electron microscope picture of
an intercrystalline fracture surface)

Fig. 1.10. Exemplary microstructures of metals

1.2.3 Polycrystalline metals

If a metal is cooled down from a melt and solidifies, it starts to crystallise. De-
pending on the cooling rate, many small nuclei of crystallisation form, small
solidified regions with crystalline structure. These nuclei then grow and coa-
lesce. As the initial nuclei develop independently, they possess no long-range
order between them. Therefore, a metal does not usually consist of one single
crystal with long-range order, but rather of several crystalline regions called
crystallites or grains. They have a diameter of the order of a few micrometres
up to a fraction of a millimetre, but can also be much larger in special cases.
Grains can be made visible by polishing the surface of the metal and then
etching it because the acid attacks differently oriented grains differently (see
figure 1.10(a)). The structure of the grains of a metal is usually termed its
microstructure.

The grain boundaries i. e., the interfaces between the grains, do not have
a perfectly crystalline order as differently oriented regions adjoin here. There-
fore, they can be considered as lattice imperfections. Frequently, they strongly
influence the properties of a material because, for example, they may be pre-
ferred diffusion paths for corroding media. This kind of weakening of grain
boundaries may then lead to failure of the material. This is called intercrys-
talline fracture and is shown in figure 1.10(b).

Technical alloys frequently consist of different phases i. e., regions with
differing chemical composition or crystal structure. As we will see later (in
section 6.4.4), particles of a second phase that are enclosed by a matrix of a
first phase are especially important to influence mechanical properties. One
example for this is iron carbide (cementite, Fe3C) that increases the strength
of steels when precipitated as fine particles.
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(a) Coherent. All crystal planes are con-
tinuous between matrix and particle

(b) Semi-coherent. Some of the crystal
planes are continuous between matrix
and particle

Fig. 1.11. Coherent and semi-coherent particles. The symbol ⊥ in subfigure (b)
denotes inserted half-planes of the lattice. The edge where such a half-plane ends is
called an edge dislocation. This will be discussed in section 6.2

Depending in the crystal structure of the two phases, the interface between
them may adopt different structures: If the crystal structures and the crystal
orientation of both phases are identical and the lattice constants do not differ
too much, the particles of the second phase will be coherent i. e., the lattice
planes of the matrix continue within the particle (see figure 1.11(a)). If the
lattice structure and orientation are identical, but the lattice constants differ
strongly, the particles will be semi-coherent because some lattice planes of
the matrix continue inside the particle but others do not (figure 1.11(b)).
Generally, the crystal lattice is distorted near to the coherent or semi-coherent
particle. If the lattice structure of both phases or the lattice orientation differ,
the particles are incoherent; the lattice planes of particle and matrix have no
relation at all (figure 1.12).

Even within a grain, the lattice may not be perfect. Some lattice sites may
not be occupied (so-called vacancies) or may be occupied by foreign atoms.
More complicated lattice imperfections may also arise, most importantly the
dislocations. As they are especially important in determining the plastic be-
haviour of metals, they are discussed in detail in chapter 6.

1.3 Ceramics

All non-metallic, non-organic materials are called ceramics [70].11 Physically,
the distinction between ceramics and metals can be based on their bond type –
11 The classification of engineering materials is not unique, and other criteria to

distinguish between the classes exist. Therefore, some materials are classified dif-
ferently by different authors.
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(a) Different crystal orientations (b) Different crystal structures

Fig. 1.12. Incoherent particles

ceramics do not possess a metallic bond, but bond types that result in a
completely filled outer shell.

Ceramics can be elementary i. e., they may consist of only one element
(carbon, for example, can exist in two different ceramic forms, as diamond or
graphite), or they can be compounds of different elements. Of technical im-
portance are silicate ceramics, containing silicon oxide (for example, porcelain
or mullite), oxide ceramics i. e., compounds of metallic elements with oxygen
(for example, aluminium oxide Al2O3, zirconium oxide ZrO2, or magnesium
oxide MgO)12, and non-oxide ceramics i. e., oxygen-free compounds like silicon
carbide and silicon nitride.

Ceramics can be chemically bound in different ways. Rather strong bond
types are the covalent and ionic bonds, weaker ones are van der Waals, dipole,
and hydrogen bonds.

1.3.1 Covalent bond

The covalent bond was already discussed in section 1.1. Atoms that lack only
a few electrons to achieve a fully occupied outer shell share some of their
electrons. As an example, the H2 molecule was explained. To form a solid
with strong bonds between the atoms, it is insufficient if each electron lacks
only one electron because in this case a two-atomic molecule will form only.
An atom with a valency of four, like carbon, can form large units in which
each atom has four bonded neighbours. Figure 1.13 shows the resulting carbon
macro-molecule, diamond. Other elements with four valencies, like silicon and
germanium, form similar structures.
12 Often, metal oxides are also denoted by the name of the metal with an appended

‘a’ instead of ‘ium oxide’, e. g., alumina, zirconia, magnesia.



www.manaraa.com

1.3 Ceramics 17

Fig. 1.13. Diamond structure with electron
orbitals

Si4+

O2–

(a) Silicon oxide (high cristobalite, SiO2) (b) Common salt (NaCl)

Fig. 1.14. Unit cells of some ceramics

An example for a ceramic comprising different elements is silicon oxide,
SiO2, shown in figure 1.14(a). In this ceramic, each oxygen atom is linked to
two silicon atoms which serve as the nodes in the three-dimensional network.

In contrast to the metallic bond, the covalent bond is directed. Thus, the
electrons do not spread evenly over a wide region of the crystal, but are
concentrated on the connecting line between two atoms. Therefore, it is much
more difficult to move atoms in a covalent crystal against each other, resulting
in brittleness and poor deformability of these ceramics.

The binding energy of the covalent bond is typically about 1 eV per bond,
but reaches a value of 1.85 eV in diamond. Due to the smaller number of near-
est neighbours, the difference between the overall binding energy of ceramics
and metals is smaller – even in diamond the binding energy of an atom is
7.4 eV, only twice that of copper, a metal with a rather high binding energy.
In other covalent crystals, typical values are between 3 eV and 5 eV, again
approximately twice that of typical metals.
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1.3.2 Ionic bond

Many ceramics are compounds of a metal and a non-metal. Common salt, for
instance, consists of sodium and chlorine (NaCl). From this formula and the
fact that common salt forms a crystal, it can be deduced that the bond cannot
be covalent, for as chlorine has a valency of only one, only a diatomic molecule
could form, but not a crystal. Instead, an ionic bond is formed.

The ionic bond is based on the high electron affinity (also known as elec-
tronegativity) of the non-metal (the chlorine in the example of common salt),
whereas the metal (the sodium in the example) has only a small ionisation en-
ergy. If the outer electron of the metal is transferred to the non-metal, only a
comparably small amount of energy is needed. Additional energy can be gained
because the two resulting ions are electrically charged and attract each other.
A diatomic molecule forms, held together by the electrostatic attraction of its
ions.

The binding energy of NaCl can be calculated rather easily (see also
exercise 3): The ionisation energy of sodium is 5.1 eV, the electron
affinity of chlorine i. e., the energy gained if an electron is added to a
chlorine atom, is 3.6 eV. Thus, an energy of 1.5 eV is needed to transfer
the electron from the sodium to the chlorine atom. In itself, this is
obviously not sufficient to form an attractive bond. The ions formed by
the electron transfer are, however, electrically charged and additional
energy can be gained if they approach each other. If the ionic distance
takes a value of 0.4 nm (a smaller distance is impossible due to the
repulsion of the electron shells), this additional energy takes a value
of 3.6 eV. In total, a binding energy of 2.1 eV results for a diatomic
sodium chloride molecule.

In an ionic crystal, the binding energy is even higher than in a diatomic
molecule because each ion is surrounded by several oppositely charged ions.
Figure 1.14(b) shows the structure of a sodium chloride crystal which is a
cubic crystal with alternating atom types. Each ion has six oppositely charged
neighbours. If we look at atoms of each type separately, we see that they
occupy the lattice points of a face-centred cubic lattice, with the two lattices
being shifted by half a lattice constant. This cubic structure of a sodium
chloride crystal can be observed even macroscopically – salt crystals always
show rectangularly arranged faces. The resulting binding energy takes similar
values to that in covalent crystals, with 3.28 eV per atom for NaCl and 4.33 eV
per atom for lithium fluoride (LiF).

Similar to the covalent bond, the ionic bond is directed. Shifting the atoms
would strongly increase the electrostatic repulsion of the ions. Therefore, ionic
crystals are also brittle.

There is a smooth transition between covalent and ionic bonds. The ion-
isation energy of metals increases with increasing number of outer electrons,
whereas the electron affinity of the non-metals decreases with an increasing
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O C O
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Fig. 1.15. Dipole bond between two carbon dioxide molecules. Dif-
ferently charged atoms attract each other

valency. In between the purely covalent and the purely ionic bond, there are
also intermediate states where the electron is preferentially located at one
atom, but can also be found at the other. One example of this is carbon diox-
ide (CO2) in which the oxygen atoms have a higher electron affinity than the
carbon atom. The electrons therefore have a higher tendency of being close
to the oxygen atoms so that these are partially negatively charged, whereas
the carbon atom has a partially positive charge. The molecule is electrically
polar and can be considered as consisting of two electric dipoles. This kind of
bond is called a polar bond.

1.3.3 Dipole bond

If carbon dioxide (CO2) is cooled down to −78℃, it forms dry ice, a solid. As
the atoms of each CO2 molecule have fully occupied shells, none of the bind-
ing mechanisms discussed so far can be responsible for the cohesion between
molecules.

The bond between the carbon dioxide molecules is due to the polarity of
the molecules in which electrical charges are distributed inhomogeneously (see
figure 1.15). Because the molecules form electric dipoles, this type of bond is
called dipole bond. As the atoms in the molecules do not carry complete ele-
mentary charges, but are charged rather weakly, the attractive force between
the molecules is correspondingly small. Typical binding energies lie in the
range of 0.2 eV–0.4 eV per bond.

Solids like dry ice are, according to the definition, ceramics, but due to the
small binding forces they are not used as engineering materials. However, the
dipole bond plays an important role in binding polymers as will be discussed
below.

1.3.4 Van der Waals bond

Even completely nonpolar molecules like oxygen or the noble gases finally
solidify if cooled down sufficiently. The attraction between such molecules
is even smaller than that between molecular dipoles, but it is nevertheless
present. This attractive force is called van der Waals force or, sometimes,
dispersion force.

The van der Waals force originates in charge fluctuations in the electron
shell of the atoms. Slightly simplified, it can be imagined that the charge
distribution of an atom is not static because the outer electrons move about.
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H Fig. 1.16. Hydrogen bond

At any instant in time, the atom therefore forms a weak dipole, although on
the average it is still electrically neutral. Neighbouring atoms possessing such
dipole moments attract each other, for proximity is energetically favourable
if the movement of the electrons is correlated.

A van der Waals force acts between all molecules. Because it is the weakest
of all bond types, it can only play a role if no other binding mechanism
is present. The strength of the van der Waals force is between 0.01 eV and
0.1 eV per bond. In addition, it is very short-ranged and decreases rapidly
with growing distance of the molecules.13 The van der Waals force is stronger
in large atoms than in small ones because, due to their larger radius, they can
produce larger dipole moments.

1.3.5 Hydrogen bond

Water has very special properties. If we compare the boiling temperature
of hydrogen compounds of elements of the sixth group of the periodic table
(tellurium, selenium, sulfur, and oxygen), these values are −2℃ for H2Te,
−42℃ for H2Se, and −60℃ for H2S. The decrease is due to the decreasing
dipole moments with decreasing atomic radius. Therefore, we would expect
water to have a very low boiling temperature. Instead, H2O boils at +100℃.
The binding force between the water molecules is thus much higher than
expected from the comparison with other molecules.

Water is a polar molecule and as oxygen has a slightly higher electron
affinity than, for example, sulfur, the larger boiling temperature may at least
partially be due to this, but a detailed calculation shows that the dipole bond
is far too weak to explain the large boiling temperature.

The special property of water is based on the formation of so called hy-
drogen bonds. As explained above, the hydrogen atoms are partially charged
positively. To achieve an optimal electron configuration, the hydrogen atoms
can arrange themselves in a way that allows them to enter those orbitals of
neighbouring oxygen atoms that are not involved in the covalent bond. Thus,
they enable these electrons to spread out over a larger region and in this way
13 Nevertheless, the van der Waals force is strong enough to enable some lizards to

walk on smooth, vertical glass panes. A large number of microscopically small
and soft lamellae on the feet of these animals are pressed so closely to the ground
that the van der Waals force is sufficient to carry the weight of the lizard [12].



www.manaraa.com

1.3 Ceramics 21

Fig. 1.17. Diamond lattice, constructed as a face-
centred cubic lattice with a diatomic basis

to lower their energy. This effect makes the hydrogen bond stronger than a
dipole bond. Figure 1.16 shows the formation of hydrogen bonds between dif-
ferent water molecules, with the hydrogen atoms acting as links between the
molecules.

This type of bridge linkage can only be formed by hydrogen, for a positively
charged hydrogen atom is nothing but a proton. Because of its small size
and because it does not have a negatively charged outer shell, the proton
can deeply penetrate the orbital of another atom and form a hydrogen bond.
Binding energies are typically in the range between 0.1 eV and 0.3 eV.

Hydrogen compounds of the other elements of the sixth group do not form
hydrogen bonds because their electron affinity is smaller and because they
cannot approach each other as closely due to their larger size.

1.3.6 The crystal structure of ceramics

Frequently, the crystal structure of ceramics is more complex than that of
metals. Even an elementary ceramic, like diamond, does not crystallise in the
cubic or hexagonal structure typical of metals. Because carbon in diamond
is covalently bound with a valency of 4, each carbon atom has four nearest
neighbours. A unit cell of the forming three-dimensional network is shown in
figure 1.13. As can be seen, the structure of the diamond lattice is cubical, but
it is not a Bravais lattice because it does not look the same from each atomic
site.

Such types of lattices are called lattices with a basis. The diamond lattice
can be constructed by placing not one, but two atoms (a diatomic basis)
on each site of a face-centred cubic lattice (figure 1.17). Another example
of a lattice with a basis, the hexagonal close-packed structure, was already
discussed in section 1.2.2. It can also be constructed by placing a diatomic
basis on each site of a Bravais lattice, in this case a simple hexagonal lattice.14

14 Alternatively, it can be visualised as consisting of two lattices stacked into each
other.
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Zn2+

S2–

(a) Zinc blende (ZnS)

Ca2+

F–

(b) Fluorite (CaF2)

Fig. 1.18. Unit cells of some ceramics

Crystals comprising different elements always have to be described as lat-
tice with a basis because the atoms are non-identical. Common salt (NaCl),
figure 1.14(b), crystallises in a simple cubic structure, where the lattice sites
are occupied alternatingly with sodium and chlorine ions, and can also be
described as a face-centred cubic lattice with a diatomic basis. Zinc blende
(ZnS, figure 1.18(a)) crystallises in a diamond lattice in which the sites are
again occupied by the alternating ion types. A similar structure, this time
with a three-atomic basis, is found in high cristobalite (SiO2, figure 1.14(a)).
Another crystal structure based on the face-centred cubic lattice is found in
fluorite (CaF2, figure 1.18(b)). Many even more complex structures are possi-
ble according to the stoichiometric ratio of the crystal-forming elements.

Similar to metals, ceramics are usually not single-crystalline but consist
of grains. Figure 1.19 shows the microstructure of aluminium oxide as an
example.

1.3.7 Amorphous ceramics

Ceramics are frequently not used in a crystalline form, but in an amorphous
structure. In this case, they are called glasses. An amorphous structure is
characterised by not possessing a long-range order. Figure 1.20 shows a two-
dimensional image of this kind of structure. Although the valencies of each
atom are saturated, no ordered structure is formed. The arrangement of the
atoms is similar to that in a melt, and glasses can indeed be considered as
undercooled melts. In many cases, glasses are transparent because there are
no grain boundaries to refract light.

Frequently, glasses are based on silicon oxide, SiO2. One common example
is window glass, consisting of approximately 70% SiO2, 15% Na2O, and 10%
CaO. Another important glassy material is enamel as coating for metals. It
has a low melting temperature that is used because of its high impact strength
and corrosion resistance.
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Fig. 1.19. Scanning electron microscope micrograph of the microstructure of alu-
minium oxide (Al2O3). The horizontal scale bar has a length of 1 µm. Courtesy of
CeramTec ag, Plochingen, Germany

O Si

Fig. 1.20. Amorphous structure of a glass
(after [9, 19]). Due to the two-dimensional
representation, only three bonds per silicon
atom are drawn

In principle, metals can also exist in amorphous structure. They are
then called metallic glasses. Due to the characteristics of the metal-
lic bond, the metal atoms tend to have a larger number of nearest
neighbours than covalently bound ceramics, making it more difficult
to enforce an amorphous structure. Metallic glasses can thus only be
formed if the metal is cooled with extremely high cooling rates of up
to 105 K/s. Using special alloys, it is nowadays possible to reduce these
rates. Metallic glasses simultaneously exhibit high strength and high
ductility.

1.4 Polymers

Polymers (plastics) consist of macromolecules, frequently in the form of large
molecular chains in which the atoms are held together by covalent bonds,
whereas the bonds between the different chains are much weaker. For this rea-
son, chain molecules can be considered as the basic building units of a polymer.
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Fig. 1.21. Chemical reaction to produce polyethylene (pe)

Contrary to metals and ceramics, polymers are thus composed not of point-
like particles (atoms), but of linear components. Therefore, their structure is
more complicated than that of the other classes of materials.

1.4.1 The chemical structure of polymers

The individual chain molecules within a polymer are usually organic com-
pounds. These chain molecules consist of numerous identical units, called
monomers. Typically, the number of monomers in a molecular chain is of
the order of 103 to 105, resulting in an overall molecular length of up to a few
micrometres. The average number of monomers in the chain molecules of a
polymer is called the degree of polymerisation.

All molecules that can link in a chemical reaction to form a chain are
suitable monomers.15 One example for such a reaction is the formation of
polyethylene from ethylene. Ethylene consists of two carbon atoms linked by
a double bond, with the free valencies of the carbon atoms being saturated
by hydrogen. Two ethylene molecules can react by using electrons from the
double bond to create a link between the molecules as shown in figure 1.21. The
remaining free electrons at the ends are not paired, resulting in an extremely
reactive C4H8 molecule that can dissociate further double bonds of other
molecules. A chain of carbon atoms is formed, in which each atom is linked
by a single bond to two other carbon atoms along the chain. The remaining
valencies of the carbon atoms are occupied by hydrogen (figure 1.22). To stop
the reaction, special chemicals can be added to terminate the reaction by
saturating the free electrons of the radicals.

All molecules that can link in such a chain reaction can be used to syn-
thesise polymers. Therefore, there exists a wide spectrum of polymers with
strongly varying chemical and physical properties. A selection of technically
important polymers will be presented in the next section.

In between the molecular chains, there are no strong chemical bonds.
Depending on the molecular structure, the strongly temperature dependent
dipole, hydrogen, or van der Waals bonds are formed.
15 Polymers form by two different types of polymerisation reactions, addition poly-

merisation and condensation polymerisation. These reactions are explained in
Jastrzebski [78].
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carbon hydrogen

Fig. 1.22. Spatial structure of polyethylene. The binding angle along the chain has
a value of 109°

Examples of polymers

The mechanical properties of polymers are mainly determined by the mobility
of the chain molecules and will be discussed in detail in chapter 8. The mobility
depends on the chemical structure of the polymer. A polymer with a carbon
chain with single bonds, for instance, is flexible at each of the carbon atoms
because a single bond between two carbon atoms can rotate freely. Double
bonds, on the other hand, are rigid. The mobility is also affected by the
presence of side groups. In this section, we will exemplify the structure of
some polymers.

The simplest possible monomer that can form a polymer chain is ethylene,
as already discussed above. The resulting polymer consists of a chain with
a carbon atom backbone. Symbolically, this is written as [C2H4]n, with the
index ‘n’ denoting the number of repeat units, the degree of polymerisation.
Starting with ethylene as basic unit, a large number of different polymers can
be created by replacing one or more of the hydrogen atoms by varying side
groups. Examples of this are polyvinyl chloride, where one hydrogen atom is
replaced by chlorine, or polystyrene, in which a benzene ring substitutes a
hydrogen atom. Table 1.3 and figure 1.23 provide more examples.

It is, of course, not necessary to use a derivative of ethylene as a monomer.
Nylon (polyamide) consists of monomers containing an amino group (NCHO);
in polydimethylsiloxane the chain itself consists of alternating silicon and oxy-
gen atoms, with two methyl groups being linked to the silicon atoms.

1.4.2 The structure of polymers

While metals and ceramics can be fully crystalline, this is generally not possi-
ble for polymers. In principle, the molecular chains can be arranged in parallel
and thus create a regular structure, but due to their length, it is highly im-
probable that the molecules are linear or regularly folded up when cooling the
polymer from a liquid state. Statistically, it is much more likely that a chain
molecule is highly twisted and entangled with other molecules. Polymers thus
always possess an at least partially amorphous structure.
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Table 1.3. Survey of some polymers. Tg and Tm are the glass transition temperature
and the melting temperature explained in chapter 8, respectively. As these values
depend on the degree of polymerisation and the amount of additives in the polymer,
they are to be understood as gross estimates. am means ‘amorphous’. If am and a
number are given, the polymer can be either amorphous or semi-crystalline (after [13,
44,98])

name application example Tg/℃ Tm/℃

thermoplastics

low-density poly-
ethylene, ldpe

foils, electr. insulations −110 . . .−20 100 . . . 110

high-density poly-
ethylene, hdpe

tubes, bottles, household
articles

−100 . . .−20 125 . . . 135

polypropylene, pp tubes, food packages, electr.
insulation

−20 . . . 0 160 . . . 175

polystyrene, ps toys, acoustic or thermal
insulation, packages

100 am / 270

polyvinyl chloride,
pvc

tubes, packages, floor cover-
ings, window frames

70 . . . 90 am / 212

polymethylmetha-
crylate, pmma

windows (e. g., in airplanes),
lighting technology

100 am

polyamide, pa gearwheels, ball bearing
cages, bearings

40 . . . 150 170 . . . 300

polycarbonate, pc casings, gearwheels, valves,
tapes, packages

150 am / 220 . . . 260

polytetrafluor ethy-
lene, ptfe

gaskets, bearings, food
industry

126a 327

polyethylene-
terephtalate, pet

glues, connectors, roofings,
tanks

80 am / 240 . . . 250

elastomers

polybutadiene car tyres −100 . . .−15 −

duromers

polyester glass-fibre laminates − −
aromatic polyamides

(aramid)
fibres for composites − −

polyimide, pi piston rings, bearings,
gaskets, electr. insulation

− / 310 . . . 365b − / am

a Literature values for the glass transition temperature of ptfe vary strongly as
measuring them is difficult [79]. The value given is taken from [13].

b Usually, polyimide is a duromer, but it can also form a thermoplastic. The glass
transition temperature is valid for the latter state.
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Fig. 1.23. Chemical structure of some polymers. The index ‘n’ denotes the repeat
of the monomer according to the degree of polymerisation. ‘R’ denotes an arbitrary
molecular chain (‘Remainder’)
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(a) Thermoplastic. The
molecular chains are not
cross-linked

(b) Elastomer. A few
cross-links exist between
the chains

(c) Duromer. Many
cross-links exist between
the chains

Fig. 1.24. Schematic sketch of the cross-linking of different polymers

As explained above, linear chains are the constituting units of polymers.
However, it is possible to covalently cross-link the chains, forming a molecular
network. These cross-links are crucial in determining the mechanical proper-
ties of the polymer because they fix the chains relative to each other and thus
render it impossible to draw out single chain molecules. Therefore, a distinc-
tion is drawn between thermoplastics with no cross-linkage, elastomers (or
rubbers) with a small number of cross-links, and duromers (also called ther-
mosetting polymers, thermosets, or resins, the latter name being due to the
fact that they are formed by hardening a resin component) with many cross-
links.16 In figures 1.24(a), 1.24(b), and 1.24(c), the different structures are
sketched. The cross-linking density can be quantified in the following way: If
we consider a diamond crystal as composed of parallel carbon-chain molecules
in which each carbon atom is linked to a neighbouring chain, the cross-linking
density takes the maximum value possible. To this a value of 1 is assigned.
With this definition, elastomers have a cross-linking density, relative to dia-
mond, of 10−4 to 10−3, whereas the cross-linking density of duromers is much
higher, with values of 10−2 to 10−1.

Elastomers and duromers are always completely amorphous because the
chemical bonds make a regular arrangement of the chain molecules impossible.
Thermoplastics, on the other hand, can be semi-crystalline i. e., contain a
mixture of crystalline and amorphous regions. The volume fraction of the
crystalline regions in a semi-crystalline thermoplastic is called its crystallinity.

In a semi-crystalline thermoplastic, the crystalline regions do not consist
of straight chain molecules aligned in parallel, but rather of regularly folded
molecules (see figure 1.25). The crystalline regions typically have a thickness
of approximately 10 nm and a length between 1 µm and 10 µm. In between
16 In some duromers, the molecular network is formed not by cross-linking the chains

but directly from the monomers. Strictly speaking, in this case it is not possible
to talk of cross-linked chains.
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(a) Crystalline region (after [9]) (b) Alignment of polymer chains
in the crystalline region

Fig. 1.25. Schematic drawing of the crystalline regions in a polymer

(a) Schematic structure (after [19]) (b) Micrograph. Courtesy of Institut für
Baustoffe, Massivbau und Brandschutz,
Technische Universität Braunschweig,
Germany

Fig. 1.26. Structure of spherulites. The crystalline regions in a spherulite are ar-
ranged radially, starting from a centre point, with the folded chain molecules being
oriented tangentially. In between the crystalline regions the material is amorphous

them are amorphous regions. The crystalline regions themselves are frequently
arranged radially with gaps filled by amorphous material, forming so-called
spherulites (figure 1.26) that are analogous to the crystallites in a metal. Their
extension is about 0.01 mm to 0.1 mm.
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Elasticity

2.1 Deformation modes

If a material is loaded with a force, the atoms within the material are dis-
placed – the material responds with a deformation. This deformation deter-
mines the mechanical behaviour of the material. Different types of deforma-
tion exist which are not only caused by different physical mechanisms, but are
also used in different engineering applications. In particular, we distinguish
reversible deformations, with the deformation disappearing after unloading,
and irreversible deformations that preserve the deformation after unloading.
Reversible deformations are used in springs and vibrating chords; irreversible
deformations are employed to produce components, e. g. by forging, or to ab-
sorb energy in crash elements. Generally, reversible deformations are called
elastic, irreversible deformations are called plastic.

Different types of deformation can also be distinguished in another way,
for they can be either time-dependent or time-independent. A deformation
is time-dependent if the material responds with a delay to changes of the
load. If – in contrast – the deformation coincides with the change of the
load, the deformation is time-independent. Time-dependent deformations are
denoted by the prefix visco-. Altogether, four different deformation types exist
since elastic as well as plastic deformations can be time-dependent or time-
independent.

In this chapter, we will start by discussing how external forces and the
resulting material deformations can be described. Subsequently, the time-
independent elastic behaviour of materials will be described. Often, it is simply
called ‘the elastic behaviour’, although this is not completely correct.

Time-independent plastic deformation will be described in chapters 3, 6,
and 8, the time-dependent plastic behaviour is subject of chapters 8 and 11.
Time-dependent elastic behaviour is mainly observed in polymers, described
in chapter 8.
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Fig. 2.1. Different stress measures

2.2 Stress and strain

Components used in engineering have strongly varying dimensions and often
also a complicated geometry, resulting in loads that vary strongly throughout
the component. To dimension components, characteristic parameters for each
material are required that describe its mechanical behaviour. These parame-
ters have to be independent of the geometry and dimension of the components
so that they can be determined in experiments using standardised specimens.
This can be achieved by normalising the load and the deformation on the
dimension (area and length, respectively). To describe the varying conditions
within a component, the load and deformation measures are specified for small
volume elements. Usually, a continuum mechanical approach is used: The in-
vestigated scale is large in comparison to the atomic distance. The matter is
considered to be distributed continuously, which results in all variables being
continuous.

2.2.1 Stress

Components are usually loaded with certain forces or moments. How strong
the material is stressed depends on the area loaded. If the area is increased, the
stress decreases. The stress σ is thus defined as the force divided by the area
the force is acting on. Stresses can be distinguished by the relative orientation
of the force and the area. If the force F is perpendicular to the area A, the
stress

σ =
F⊥
A

(2.1)

is called a normal stress (sometimes also direct stress, see figure 2.1(a)). If the
force is parallel to the area (figure 2.1(b)), the stress is a shear stress

τ =
F‖

A
. (2.2)

In all other cases, the force can be decomposed into a normal and a parallel
component and normal and shear stresses act simultaneously (figure 2.1(c)).

To describe the loading in a certain point of a material, we imagine it to be
cut apart at this point along a cutting plane. The stress that was transferred
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Fig. 2.2. Numbering of the components of the
stress tensor σ

through this plane by the material cut away now has to be replaced by an
external stress vector, the so-called surface traction, to retain the equilibrium
of force in the material. The value of the surface traction depends on the
orientation of the cutting plane. If, for example, we cut a rod loaded with a
uniaxial stress σ along a plane perpendicular to the applied force, the surface
traction is a vector in the direction of the force with magnitude σ. If the
cutting plane is parallel to the force vector, the surface traction vanishes i. e.,
we don’t need to apply a surface traction vector to preserve the equilibrium.
The stress state in three dimensions can be determined by cutting along three
cutting planes that are preferentially chosen parallel to the coordinate axes.
The nomenclature of the stresses is chosen as follows: The first index denotes
the normal vector of the cutting plane considered (figure 2.2), the second index
denotes the direction of the stress: σij = Fj/Ai.1 The shear stress on each of
the three cutting planes is decomposed into its two components parallel to the
coordinate axes. These 9 components of the stress are collected in a component
matrix (σij) that forms the stress tensor of second order σ.

In a so-called classical continuum, an infinitesimal small material element
cannot transfer moments.2 From this, it can be shown that

σij = σji for i, j = 1 . . . 3 (2.3)

holds i. e., the stress tensor is symmetric [67]. It has only 6 independent com-
ponents, 3 on the diagonal and 3 off-diagonal ones.

If we change the coordinate system, the components of the stress tensor σ
(its matrix representation) change, but it still describes the same state of
stress. The transformation rules are detailed in appendix A.5.

For any stress tensor σ, there is a coordinate system where only the diago-
nal components of the tensor are non-vanishing, whereas all off-diagonal parts
are zero. In this coordinate system, all stresses are thus normal stresses. These
stresses are called principal stresses of the stress tensor (see appendix A.7); the
axes of the coordinate system are called the principal axes. Principal stresses
are denoted with Roman numerals when they are sorted: σI ≥ σII ≥ σIII;
1 For shear stresses, τij (with i 6= j) is frequently used instead.
2 This assumption can be relinquished, resulting in the theory of a Cosserat contin-

uum. In this case, infinitesimal material elements can transfer moments, resulting
in an asymmetric stress tensor.
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Fig. 2.3. Mohr’s circle. Only those stress
pairs of the surface traction lying in the grey
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if they are unsorted, Arabic numerals are used: σ1, σ2, σ3. In its principal
coordinate system, the stress tensor is thus simply

σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 .

In many cases (for example when we consider plastic yielding of materials,
see section 3.3.2), it is necessary to calculate the shear stresses that can occur
in arbitrarily oriented coordinate systems from the known principal stresses.
This can be done geometrically with a construction known as Mohr’s circle [58,
81], see figure 2.3. We draw a diagram with the normal stresses on the abscissa
and the shear stresses on the ordinate. The three principal stresses are marked
in the diagram and three circles are drawn, each of them bounded by two of
the principal stresses. If we cut the material at the point considered, each
cutting plane has a certain surface traction which can be decomposed into a
pair of a normal (σ) and a shear (τ) component. If we mark all such pairs
of σ-τ values for all possible orientations of the cutting plane in the diagram,
they form the shaded area in figure 2.3. For instance, there is a cutting plane
of maximum shear stress, with a shear stress value of τmax = (σI − σIII)/2
and a normal stress given by the average of the largest and smallest principal
stress, (σI + σIII)/2.

If two principal stresses take the same value, a simple circle without any
open area results; if all three principal stresses are identical, the circle degen-
erates to a point, and the stress state is isotropic.

2.2.2 Strain

If a component is stressed, points within it are displaced. There are different
kinds of displacements: The component can be displaced as a whole in a rigid-
body displacement or it can be rotated rigidly (rigid-body rotation). In these
cases, distances and angles between points in the material remain unchanged;
the component itself is thus still undeformed. To describe the deformation of
a component, considering the displacements only is therefore not too helpful.
Instead, changes of distances and angles between points have to be looked at.
This can be done by calculating the change of the displacement with position.
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All deformations, also called strains, can be composed from changes in
lengths and angles (shearing of the material). To describe changes in length,
the normal or direct strain ε is defined as the difference ∆l between the final
length l1 and the initial length l0 (figure 2.4(a)):

ε =
l1 − l0

l0
=

∆l

l0
. (2.4)

Changes in the angles are described by the shear γ, corresponding to the
change in an initially right angle. For small deformations ∆x (see figure 2.4(b)),
it is defined as

γ =
∆x

y
, (2.5)

with ∆x and y being perpendicular.
An arbitrary deformation with small strains3 of a material element can be

described – analogous to the stress – by a tensor, the strain tensor of second
order ε. To calculate the strain tensor, we chose a coordinate system that is
fixed in space and consider the displacement of material points in this system
as sketched in figure 2.5. This position-dependent displacement is described
by a vector field u(x). To understand how the strain is calculated from the
displacement, we first consider some special cases.

A pure strain in normal direction, for example in the x1 direction, causes
the displacement u1 to increase with increasing x1. If we consider two neigh-
bouring points x

(1)
1 and x

(2)
1 , with an initial, infinitesimal distance ∆x1 → 0,

that are displaced by u
(1)
1 and u

(2)
1 , respectively, the resulting strain is

ε11 = lim
∆x1→0

u
(2)
1 − u

(1)
1

∆x1
=

∂u1

∂x1
.

Transferring this result to the other spatial directions, we get for the normal
strains

εii =
∂ui

∂xi
. (2.6)

3 Arbitrary deformations with large strains will be discussed in section 3.1.
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Fig. 2.5. Two-dimensional displacement field in a material. The coordinate system
xi remains fixed in space; the displacements u(j) of material elements with the
original coordinates x(j) refer to the original position

The indices are underscored to denote that the Einstein summation convention
is not to be used for the repeated index (see appendix A) i. e., they are not
summed over.

If the material is sheared, the region considered is distorted and initially
right angles are made obtuse or acute. The rotation of the edge parallel to
the x1 axis and of the other edge both contribute to this angular change (cf.
figure 2.5). For small rotations and in the limit ∆x1 → 0 and ∆x2 → 0, the
resulting shear is

γ12 = lim
∆x1→0

u
(2)
2 − u

(1)
2

∆x1
+ lim

∆x2→0

u
(3)
1 − u

(1)
1

∆x2
=

∂u2

∂x1
+

∂u1

∂x2
.

Generalising to all coordinate axes yields

γij =
∂ui

∂xj
+

∂uj

∂xi
for i 6= j . (2.7)

This definition implies γji = γij .
Using equations (2.6) and (2.7), all strains can be calculated if they are

assumed to be small. However, they cannot be used as components of a tensor,
for they do not transform correctly as tensors should. A correct transforma-
tion behaviour can be achieved when the shear strain γij is replaced by half of
its value: εij = γij/2. An additional advantage of this formulation is that equa-
tions (2.6) and (2.7) do not have to be written separately for the components,
but can be collected in one equation:

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.8)

This definition ensures εij = εji, rendering the strain tensor symmetric. Simi-
lar to the stress tensor, only 6 of its components are independent.
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If the material is displaced relative to the coordinate system in a rigid-
body translation, the displacement vectors are the same at any material point,
u(x) = const. This yields ∂ui/∂xj = 0 and thus εij = 0 as should be expected.
This result is intuitively obvious, for a rigid-body translation does not cause
strains.

A rigid-body rotation is more problematic. For small rotations around
the x3 axis with an angle α, we find ∂u1/∂x1 = cos α − 1 ≈ 0, ∂u2/∂x2 =
cos α − 1 ≈ 0, ∂u1/∂x2 = − sinα ≈ −α and ∂u2/∂x1 = sin α ≈ α. If we
insert this into equation (2.8), the mixed terms ∂u1/∂x2 and ∂u2/∂x1 cancel,
resulting in εij = 0. However, for large rotations, the approximations are not
valid and definition (2.8) is not applicable anymore. Suitable definitions of the
strain need more involved tensor calculations and will be discussed in more
detail in section 3.1.

2.3 Atomic interactions

In the previous chapter, we saw that different material classes have different
types of chemical bonds. The atoms in the materials attract each other by
different physical mechanisms. If there were only an attractive force between
the atoms, their distance would quickly reduce to zero. However, in addition
to the attractive interaction of the atoms, there also is a repulsive one. The
repulsive interaction is – in a slightly simplified picture – based on the repul-
sion of the electron orbitals that cannot penetrate each other. The repulsive
interaction is short-ranged i. e., it is only relevant if the distances are small,
but for very small distances it becomes much larger than the attractive force.

The distance r between neighbouring atoms (e. g., in a solid) takes a value
that minimises the potential energy of the total interaction between the atoms.
If we superimpose the repulsive potential UR(r) and the attractive potential
UA(r), the total potential is

U(r) = UA(r) + UR(r) . (2.9)

It is minimised at a stable atomic distance r0 as sketched in figure 2.6. Usually,
atomic distances are between 0.1 nm and 0.5 nm [17]. Due to the shape of the
potential, the term potential well is frequently used to describe it.

The interaction force (or binding force) Fi(r) between the atoms can be
calculated by differentiating the potential:

Fi(r) = −dU(r)
dr

. (2.10)

In equilibrium, Fi(r0) = 0. If an external force is added to the interaction
forces, the stable atomic distance changes and the material deforms.

Because the first derivative of the potential (the negative force) vanishes
in equilibrium, the potential energy can be approximated by a spring model
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Fig. 2.6. Interaction between two atoms (potential U , binding force Fi = −dU/dr,
stiffness C = d2U/dr2)

(a harmonic law) with a spring stiffness k if we are sufficiently close to the
equilibrium position r0:4

U(r) ≈ U0 +
1
2
k(r − r0)2 ,

Fi(r) ≈ −k(r − r0) . (2.11)

The external load on a single bond is equal to the negative internal (binding)
force:

F ≈ k(r − r0) . (2.12)

Thus, for small displacements, the force is proportional to the displacement.
If the external force is so large that the distance of the atoms attains the

value rD (‘D’ for ‘debonding’) shown in figure 2.6 where the restoring force is
4 Mathematically, this is a Taylor series cut off at the second-order term.



www.manaraa.com

2.4 Hooke’s law 39

maximal, a further increase in the external load cannot be borne by the bond.
The bond, and thus the material, breaks.

This is also reflected in the stiffness. It decreases from its initial value k
at r0 to zero at rD and then becomes negative, rendering the bond unstable.
If we use the simplifying assumption of a harmonic law to describe the spring,
we assume a constant spring stiffness. This is a valid assumption for small
displacements, typical for the elastic deformation of metals and ceramics.

2.4 Hooke’s law

For small displacements from the equilibrium position, the force between the
atoms is proportional to the displacement (see equation (2.12)). This is true
not only for a single bond, but also for larger atomic compounds and thus for
macroscopic solids. This linear-elastic behaviour is described mathematically
by Hooke’s law. It is valid only for small strains. In metals and ceramics, this
is not an important constraint because the elastic part of any deformation is
small.

For uniaxial loads (figure 2.4(a)), Hooke’s law is

σ = Eε (2.13)

with Young’s modulus E, also sometimes called the elastic modulus. Young’s
modulus quantifies the stiffness of a material: the larger Young’s modulus is,
the smaller is the elastic deformation for a given load.

If a component is strained by a strain ε, strains in perpendicular directions
also develop. Usually, a positive strain causes a contraction in the transverse
direction, justifying the name transversal contraction for this phenomenon. It
is measured by Poisson’s ratio ν, defined as

εtrans = −νε . (2.14)

In many metals, Poisson’s ratio is approximately ν ≈ 0.33; if the material is
incompressible so its volume remains constant, ν = 0.5 holds.

For pure shear (figure 2.4(b)), Hooke’s law is

τ = Gγ ,

where G is the shear modulus. Similar to Young’s modulus, the shear modulus
quantifies the stiffness of the material in shear.

In elastically isotropic materials, the elastic properties are the same in all
spatial directions. In this case, the elastic constants are related as follows:

G =
E

2(1 + ν)
. (2.15)

This equation will be discussed in section 2.4.3.
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Table 2.1. Young’s modulus of selected materials [8]. For polymers, a more detailed
compilation is given in table 8.2

material E/GPa

metals ≈ 15 . . . 500

tungsten 411
nickel alloys 180 . . . 234
ferritic steels 200 . . . 207
austenitic steels 190 . . . 200
cast iron 170 . . . 190
copper alloys 120 . . . 150
titanium alloys 80 . . . 130
brasses and bronzes 103 . . . 124
aluminium alloys 69 . . . 79
magnesium alloys 41 . . . 45

ceramics ≈ 40 . . . 1000

diamond 1000
tungsten carbide, WC 450 . . . 650
silicon carbide, SiC 450
aluminium oxide, Al2O3 390
titanium carbide, TiC 379
magnesium oxide, MgO 250
zirconium monoxide, ZrO 160 . . . 241
zirconium dioxide, ZrO2 145
concrete 45 . . . 50
silicon 107
silica glass, SiO2 94
window glass 69

polymers ≈ 0.1 . . . 5.0

polyester 1.0 . . . 5.0
nylon 2.0 . . . 4.0
polymethylmethacrylate 3.0 . . . 3.4
epoxy resins 3.0
polypropylene 0.9
polyethylene 0.2 . . . 0.7

composites

carbon-fibre reinforced polymers 70 . . . 200
glass-fibre reinforced polymers 7 . . . 45
wood, ‖ to the fibres 9 . . . 16
wood, ⊥ to the fibres 0.6
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Fig. 2.7. Dependence of Young’s modulus on the amount of alloyed nickel in cop-
per [33]

In table 2.1, a survey of the Young’s moduli of several engineering materials
is given. The elastic stiffness of ceramics slightly exceeds that of metals, but
is of the same order of magnitude. Young’s modulus of most polymers is
much smaller.5 This should be expected, for the stiffness is determined by
the strength of the atomic bonds, which is larger in ceramics than in metals.
In polymers, the weaker inter-molecular bonds determine the stiffness. How
Young’s modulus can be measured will be described in section 3.2.

From table 2.1, it can also be seen that alloying does not significantly
change the stiffness of materials. For example, Young’s modulus of different
aluminium alloys varies only by about 10%, whereas their strength (see chap-
ter 6) can be raised considerably by alloying.

If two different metals are alloyed, the resulting Young’s modulus is
not necessarily the weighted average of their two moduli because the
binding energy UAB between the atoms A and B is usually not the
average of the single-type energies UAA and UBB. Depending on the
alloying elements, Young’s modulus may even be larger than those of
both constituent elements. A rule of thumb is that adding a material
with a high melting point (e. g., tungsten to nickel) increases the elastic
modulus.

There are a few alloy systems where Young’s modulus can be in-
creased considerably. This is the case when both the solubility of the
elements and the difference in Young’s modulus are large. For exam-
ple, nickel (ENi = 207GPa) and copper (ECu = 121GPa) are com-
pletely soluble, and their Young’s moduli differ almost by a factor of
two. Therefore, Young’s modulus of copper-nickel alloys (nickel bronze)
can be strongly increased by raising the nickel content (figure 2.7).

Usually, though, these effects are small because the solubility of al-
loying elements is usually small (< 10%) in technical alloys. Therefore,

5 Polymer fibres are an exception, see section 8.5.2.
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Young’s modulus of most engineering alloys differs only by less than
±10% from that of the un-alloyed matrix. In contrast, the strength, a
measure of the maximum load the material can bear, can be strongly
increased by alloying and may widely exceed the strength of all alloying
elements (see section 6.4).

A particularly efficient way of increasing Young’s modulus is to use compos-
ites, containing, for example, fibres with large stiffness in a matrix of another
material. Composites are the subject of chapter 9.

So far, Hooke’s law has only been stated for loads that were either normal
or shear loads. In real-world applications, components are usually loaded in a
multiaxial state where normal and shear stresses are combined. This case will
be considered in section 2.4.2. Afterwards, different cases of special symmetries
are considered that allow simplifications of Hooke’s law. Prior to this, we will
discuss the energy stored in elastic deformations.

2.4.1 Elastic strain energy

Any elastic deformation of a material stores energy as can be easily understood
by considering the spring model from section 2.3. To calculate this energy, we
consider an (infinitesimal) brick-shaped volume element of length l and cross
section A to which a load F is applied. The resulting stress is σ = F/A. If
we increase the stress by an amount dσ, the external force must increase by
dF = dσA. The material lengthens by an amount dl.

The work done is dW = Fdl.6 If we insert σ = F/A and the definition of
strain, dε = dl/l, we find for the work done

dW = Fdl = σAdε l = σdε V , (2.16)

where V = Al is the volume of the brick. If we normalise the work to the
volume, thus switching to the energy density dw = dW/V , we find dw = σdε.

The total work done per unit volume in a material strained up to εmax is
the integral over dw:

w =
∫ εmax

0

σdε . (2.17)

This equation is valid for arbitrary uniaxial deformations. If the deformation
is irreversible, part of the work is transformed to heat and cannot be recov-
ered on unloading. In elastic (reversible) deformations, the energy is stored in
6 Here we use the force at the beginning of the strain increment. As we can ne-

glect second-order terms in this infinitesimal calculation, this does not make a
difference: dW = (F + dF )dl = Fdl + dFdl = Fdl.
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the strained atomic bonds and can be recovered.7 Because the work done is
stored as potential energy of the atomic bonds, the name elastic potential is
frequently used to describe the stored energy (cf. section 2.3).

This calculation was valid for uniaxial stresses and strains only. For arbi-
trary stresses and strains, we have to generalise by switching to tensors:

w =
∫ εmax

0

σ ·· dε . (2.18)

The product of the stress and the strain increment in this equation is the
so-called double contraction explained in appendix A.4.

In a linear-elastic material under uniaxial loads, stress and strain are re-
lated by Hooke’s law, σ = Eε. In this case, the integral in equation (2.17) can
easily be solved:

w(el) =
∫ εmax

0

Eεdε =
1
2
Eε2

max =
1

2E
σ2

max . (2.19)

The elastic strain energy increases quadratically with the stress or the strain
(see also exercise 6).

∗ 2.4.2 Elastic deformation under multiaxial loads8

We already saw in section 2.2.2 that a load that causes a normal strain in
its direction also causes transversal normal strains. For example, a stress in
x1 direction, σ11, causes the following strains, according to equations (2.13)
and (2.14): ε11 = σ11/E, ε22 = ε33 = −νσ11/E. One component of the stress
tensor σ thus acts on several components of the strain tensor ε. Similarly, a
prescribed strain in one direction may change the stresses in other directions.
If we restrict ourselves to small deformations, the relation between stress and
strain is linear. Mathematically, an arbitrary linear relation between two ten-
sors of second order can be described using a double contraction:

σij = Cijkl εkl or σ = C∼4
·· ε (2.20)

The elasticity tensor C∼4
is a tensor of fourth order. It can be considered as a

four-dimensional ‘matrix’ with three components in each of its 4 directions.
Its 34 = 81 components Cijkl are the material parameters that completely
describe the (linear) elastic behaviour.

Because the stress and the strain tensor contain only 6 independent compo-
nents each, due to their symmetry, the elasticity tensor C∼4

needs only 62 = 36
independent parameters.
7 The storage and dissipation of energy is also discussed in exercise 26.
8 Sections with a title marked by a ∗ contain advanced information which can be

skipped without impairing the understanding of subsequent topics.
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That not all 81 components of the elasticity tensor are needed can
be most easily understood using an example. For σ12, we find from
equation (2.20)

σ12 = C1211 ε11 + C1212 ε12 + C1213 ε13

+ C1221 ε21 + C1222 ε22 + C1223 ε23

+ C1231 ε31 + C1232 ε32 + C1233 ε33 .

Using the symmetry condition εij = εji, we can collect terms as follows:

σ12 = C1211 ε11 + C1222 ε22 + C1233 ε33

+ (C1212 + C1221) ε12

+ (C1213 + C1231) ε13

+ (C1223 + C1232) ε23 .

The components Cijkl and Cijlk always appear together and thus rep-
resent only one independent parameter. This can be implemented by
using the condition Cijkl = Cijlk. Thus, the 9 components C12kl reduce
to only 6 independent components C1211, C1222, C1233, C1212, C1213,
and C1223.

Furthermore, because σ12 = σ21, we can also set Cijkl = Cjikl. The
two symmetry conditions Cijkl = Cjikl and Cijkl = Cijlk reduce the
number of independent components of the elasticity tensor to 36.

The reduced number of components enables us to use a simplified matrix
notation (Voigt notation), rewriting the tensors of second order as column
matrices and the tensor of fourth order as a quadratic matrix: (σij) −→ (σα),
(εij) −→ (εα), and (Cijkl) −→ (Cαβ). The new Greek indices α and β take
values from 1 to 6. Writing down the components explicitly, we have

(σα) =
(

σ11 σ22 σ33 σ23 σ13 σ12

)T
,

(εα) =
(

ε11 ε22 ε33 γ23 γ13 γ12

)T

with γij = 2εij . The factors of 2 for the mixed components are due to the
re-writing of the tensor components.

This can again be understood most easily using an example. The stress
component σ11 is, according to equation (2.20),

σ11 = C1111ε11 + C1112ε12 + C1113ε13

+ C1121ε21 + C1122ε22 + C1123ε23

+ C1131ε31 + C1132ε32 + C1133ε33 .
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With help of the symmetry conditions ε21 = ε12, ε31 = ε13, ε32 = ε23,
C1121 = C1112, C1131 = C1113, and C1132 = C1123, we find

σ11 = C1111ε11 + C1122ε22 + C1133ε33

+ 2C1123ε23 + 2C1113ε13 + 2C1112ε12 .

The sequence of the mixed terms is not universally agreed upon, but a consis-
tent convention has to be used in any calculation.9

The elasticity tensor possesses further symmetries due to the existence of
an elastic potential [108]. The elasticity matrix (Cαβ) is symmetric because
of this and the number of independent components reduces further to 21 (6
diagonal and 15 off-diagonal ones).

The elastic potential was already introduced in equation (2.18). Writing
it in differential form yields dw = σ ·· dε, or, after re-writing,

σij =
dw

dεij
or σ =

dw

dε
.

Thus, the stress tensor can be calculated by differentiating the elastic
potential with respect to the strains.

Hooke’s law, equation (2.20), can also be written in differential
form:

Cijkl =
∂σij

∂εkl
or C∼

4
=

∂σ

∂ε
.

The elasticity tensor is thus the derivative of the stress with respect to
the strain.

Inserting the stress from the previous equation, we find

Cijkl =
∂2w

∂εij∂εkl
or C∼

4
=

∂2w

∂ε∂ε
.

Because the sequence of taking the derivatives is arbitrary, we find the
symmetry condition Cijkl = Cklij for the elasticity tensor, or, for the
elasticity matrix, (Cαβ) = (Cβα).

Altogether, the three symmetry conditions Cijkl = Cjikl = Cijlk =

Cklij reduce the number of independent components to 21 even in an-
isotropic materials.

Writing out all components, Hooke’s law looks like this:
9 When working with material parameters, the convention in use has to be checked

carefully.
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σ11

σ22

σ33

σ23

σ13

σ12

 =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




ε11

ε22

ε33

γ23

γ13

γ12

 . (2.21)

This notation is easier to handle than the tensor notation. Its disadvantage is
that coordinate transformations cannot be performed; in this case, the tensor
notation must be used.

The arrangement of atoms in a crystal lattice causes further symmetry
conditions that will be discussed in the next sections.

∗ 2.4.3 Isotropic material

A material is mechanically isotropic if all of its mechanical properties are
the same in all spatial directions. The elasticity tensor must thus remain
unchanged by arbitrary rotations of the material or the coordinate system.
Its components must be invariant with respect to rotations.

This invariance property can be used to show that the elasticity matrix
has the simple form:

(Cαβ) =


C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

 (2.22)

with the additional relation

C44 =
C11 − C12

2
. (2.23)

All components not specified vanish, so there are only two independent pa-
rameters, C11 and C12.

The following relations between these parameters and the more familiar
Young’s modulus E, Poisson’s ratio ν, and shear modulus G hold:

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
,

C12 =
Eν

(1 + ν)(1− 2ν)
,

C44 = G =
E

2(1 + ν)
.

(2.24)
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Fig. 2.8. Example to demonstrate the isotropy equation (2.23): Illustration of the
loading and the resulting deformation. Both figures show the same deformation,
merely viewed in different coordinate systems

Thus, the σ11 component is

σ11 =
E

(1 + ν)(1− 2ν)

(
(1− ν)ε11 + ν(ε22 + ε33)

)
(2.25a)

and σ12 is given by

σ12 = Gγ12 . (2.25b)

Apart from E, G, and ν, the so-called Lamé’s elastic constants λ and
µ are sometimes used. Their relation to the other elastic constants is
as follows [16,112]:

λ = C12 =
Eν

(1 + ν)(1− 2ν)
,

µ = C44 =
E

2(1 + ν)
.

From equation (2.23), we find C11 = λ + 2µ.

The validity of the condition (2.23) can be illustrated using the follow-
ing example.10 A material is deformed in plane strain with the following
strain tensor

(εij) =

0@ −ε 0 0

0 ε 0

0 0 0

1A ,

written in the xi coordinate system (see figure 2.8(a)). Using Hooke’s
law (2.21) and the elasticity matrix from equation (2.22), we find for
the required stress

10 The calculation is further elaborated in exercise 5.
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(σij) =

0@ −ε(C11 − C12) 0 0

0 ε(C11 − C12) 0

0 0 0

1A . (2.26)

If we consider the same deformation in a coordinate system xi′ that
is rotated by 45° relative to the xi system, the coordinate transforma-
tion results in the following strain tensor:

(εi′j′) =

0@ 0 ε 0

ε 0 0

0 0 0

1A . (2.27)

This corresponds to pure shear with γ12 = 2ε, see figure 2.8(b). If we
ignore the isotropy of the elasticity tensor for a moment, we have to
assume that its components are different in different coordinate systems.
In the primed coordinate system, σα′ = Cα′β′ εβ′ leads to

(σi′j′) =

0@ 0 2εC4′4′ 0

2εC4′4′ 0 0

0 0 0

1A . (2.28)

The stresses (σij) and (σi′j′) describe the same state of stress, There-
fore, a coordinate transformation must transform (σij) to (σi′j′):

(σi′j′) =

0@ 0 2ε(C11 − C12) 0

2ε(C11 − C12) 0 0

0 0 0

1A . (2.29)

Comparing the components in equation (2.28) and (2.29), we find

C4′4′ =
C11 − C12

2
. (2.30)

Because the material is isotropic, Cα′β′ = Cαβ and, especially, C4′4′ =

C44. Thus, equation (2.30) is the same as (2.23).

Frequently, Hooke’s law is not needed to calculate the stress components from
a given strain, as in equation (2.20), but to determine the strains from the
stresses. We can rearrange equation (2.20) as follows:

εij = Sijkl σkl . (2.31)

S∼4
is the compliance tensor, the inverse of the elasticity tensor C∼4

.11 Because in-
verting a matrix is an awkward calculation, the components of the compliance
matrix are written explicitly here:
11 We can also invert the elasticity matrix in the Voigt notation instead: (Sαβ) =

(Cαβ)−1.
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(Sαβ) =



1/E − ν/E − ν/E

− ν/E 1/E − ν/E

− ν/E − ν/E 1/E

1/G

1/G

1/G

 . (2.32)

Again, there is an additional condition, S44 = 2(S11 − S12), from which we
can derive equation (2.15), G = E/2(1 + ν). Inserting equation (2.32) into
Hooke’s law, we find for the ε11 component, for instance,

ε11 =
1
E

(
σ11 − ν(σ22 + σ33)

)
(2.33a)

and for the γ12 component

γ12 =
1
G

σ12 . (2.33b)

The other components are analogous.

If we take a closer look at the elasticity matrix (Cαβ), equation (2.22), and
the compliance matrix (Sαβ), equation (2.32), we realise the following pattern:
Both are of the form

• • •
• • •
• • •

•
•
•

 ,

where a •marks a number and unoccupied spaces mark zero values. The upper
right and lower left sub-matrices describe the relation between shear stresses
and normal strains and between normal stresses and shear strains. As they
are vanishing, there is no coupling between those components. Therefore, in a
fixed coordinate system, normal stresses cannot cause shear strains and shear
stresses cannot cause normal strains in an isotropic material.

The lower right sub-matrix, relating shear stresses and shear strains, is
diagonal. Shear stresses thus can only cause shear strains of the same orienta-
tion.

The upper left sub-matrix, which relates normal stresses and normal
strains, is fully occupied. Therefore, a normal stress induces not only a strain
in the same direction, but also transverse normal strains, the transverse con-
traction. Similarly, a normal strain causes stresses in transverse directions.

The consequences of these couplings between the different components
can be illustrated using an example. We want to calculate the stiffness in
x1 direction of a component for two different cases. In the first case, the
component can deform freely in the x2 and x3 direction, so the resulting
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Fig. 2.9. Two different constraints on the same component

stress state is uniaxial and σ22 = σ33 = 0 (figure 2.9(a)). In the second case,
transversal contractions are suppressed, ε22 = ε33 = 0, and the state is one of
uniaxial strain (figure 2.9(b)).

For uniaxial stresses, it is easiest to calculate the strains with equa-
tion (2.31). This yields

(εij) =

 σ11/E 0 0
0 − σ11ν/E 0
0 0 − σ11ν/E

 .

In x1 direction, we thus find the uniaxial Hooke’s law (2.13), σ11 = Eε11.
In the case of uniaxial strain, equation (2.20) can be employed, resulting

in

(σij) =

 C11ε11 0 0
0 C12ε11 0
0 0 C12ε11

 .

In x1 direction, we find by using equation (2.24)

σ11 =
E(1− ν)

(1 + ν)(1− 2ν)
ε11 .

If we assume a Poisson’s ratio of ν = 1/3, we get

σ11 =
3
2
Eε11 .

By suppressing transverse contractions, the stiffness of the component in-
creases by 50% compared to the uniaxial stress state. This example also illus-
trates that the simple relation σ = Eε must not be used inconsiderately, even
if only the stresses and strains in one direction are of interest.

∗ 2.4.4 Cubic lattice

In a cubic crystal, the material properties are anisotropic, but there are a
number of rotational symmetries. For example, rotations by multiples of 90°
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around the 〈100〉 axes12 do not change the crystal relative to the coordinate
system. Further symmetries are rotations by multiples of 120° around the
〈111〉 axes and by multiples of 180° around the 〈110〉 axes. All these rotations
must leave the elasticity tensor and the compliance tensor invariant. Using
tensor algebra, the elasticity matrix can be shown to have the following form
in a coordinate system parallel to the edges of the unit cell:

(Sαβ) =


S11 S12 S12

S12 S11 S12

S12 S12 S11

S44

S44

S44

 . (2.34)

Unspecified components vanish. Thus, the three independent constants S11,
S12, and S44 remain. If the coordinate system is not parallel to the edges of
the unit cell, a coordinate transformation of the elasticity tensor has to be
used to find the components. In this case, the elasticity matrix takes a shape
different from that in equation (2.34).

Because the material properties are direction-dependent in a cubic crystal,
they have to be stated together with the corresponding direction. According
to the definition, the load direction has to be stated for Young’s modulus:
Ei. Because the shear stress τij and shear strain γij have two indices, two
indices are needed for the shear modulus Gij . Poisson’s ratio relates strains
in two directions. Here the second index ‘j’ denotes the direction of the strain
that causes the transversal contraction in the direction marked by the first
index ‘i’: εii = −νijεjj .13 If the coordinate system is aligned with the axes
of the unit cell, the directions can be characterised using Miller indices, for
example E〈100〉. The following relations between the components Sij and E,
G, and ν hold:

S11 =
1

E〈100〉
,

S12 = −
ν〈010〉〈100〉

E〈100〉
= −

ν〈001〉〈100〉

E〈100〉
,

S44 =
1

G〈010〉〈100〉
=

1
G〈001〉〈100〉

.

(2.35)

〈100〉 is the set of all directions that are parallel to the edges of the unit cell.
In cubic crystals, it is rather unusual to work with E, G, and ν. Instead, the
components S11, S12, and S44 of the compliance matrix or C11, C12, and C44

of the elasticity matrix are used.
12 Directions and planes in crystals are described using Miller indices, explained in

appendix B.
13 As before, underscoring the indices indicates that no summation over this re-

peated index is done, see appendix A.4.
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There is no equation similar to (2.23) in a cubic crystal; S11, S12, and S44

(or C11, C12, and C44) are not related. This can be seen from the example
from section 2.4.3 on page 47. Up to equation (2.30), C4′4′ = (C11 − C12)/2,
the calculation remains unchanged. If the material is anisotropic, as in the
case of a cubic crystal, C4′4′ 6= C44, so

C44 6=
C11 − C12

2
.

It is sufficient to know the elastic constants in one coordinate system (for
example, S11, S12, and S44) to calculate the properties in any other coordinate
system.

To do this, we have to transform C∼
4

or S∼
4

to the desired coordinate

system. The transformation has to be done using the tensors, not the
matrices C or S in the simplified Voigt notation, because these matrices
do not transform correctly.

Young’s modulus in arbitrary directions [hkl], for instance, follows the relation

1
E[hkl]

= S11 −
[
2(S11 − S12)− S44

](
α2β2 + α2γ2 + β2γ2

)
(2.36)

with α = cos
(
[hkl], [100]

)
, β = cos

(
[hkl], [010]

)
, and γ = cos

(
[hkl], [001]

)
.

The anisotropy factor A quantifies the difference of the mechanical be-
haviour relative to an isotropic material. It is defined as

A =
2(S11 − S12)

S44
. (2.37)

If A = 1, the material is isotropic, otherwise it is anisotropic.
In the elasticity matrix (Cαβ), the same components are occupied as in

the compliance matrix (Sαβ).14 Both matrices can be converted using the
following equations which are also valid for an isotropic material:

C11 =
S11 + S12

(S11 − S12)(S11 + 2S12)
, (2.38a)

C12 = − S12

(S11 − S12)(S11 + 2S12)
, (2.38b)

C44 =
1

S44
(2.38c)

and

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)
, (2.39a)

14 As long as the coordinate system is parallel to the edges of the unit cell.
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S12 = − C12

(C11 − C12)(C11 + 2C12)
, (2.39b)

S44 =
1

C44
. (2.39c)

The considerations concerning the coupling between different stress and
strain components from the end of section 2.4.3 apply also to cubic crystals.

∗ 2.4.5 Orthorhombic crystals and orthotropic elasticity

The unit cell of the orthorhombic crystal is brick-shaped. The elastic proper-
ties are therefore symmetric with respect to three perpendicular planes. In a
coordinate system that is parallel to the edges of the unit cell, the compliance
matrix (equation (2.31)) takes the form

(Sαβ) =


S11 S12 S13

S12 S22 S23

S13 S23 S33

S44

S55

S66



=



1/E1
− ν12/E2

− ν13/E3

− ν21/E1
1/E2

− ν23/E3

− ν31/E1
− ν32/E2

1/E3

1/G23

1/G13

1/G12

 . (2.40)

Again, the unspecified components vanish. Altogether, there are nine inde-
pendent elastic constants. It has to be noted that the compliance tensor is
symmetric, so some parameters are related, for example −ν21/E1 = −ν12/E2.
Nevertheless, it is useful to discriminate between ν12 and ν21, for they are
defined by transversal contraction.

In a coordinate system parallel to the edges of the unit cell, normal stresses
can only cause normal strains, and shear stresses only shear strains. This is
not valid anymore if the coordinate system is arbitrarily oriented, so normal
strain and shear are coupled.

The orthorhombic crystal lattice itself is not too important technically
because there are only a small number of materials crystallising in this struc-
ture. Composites (chapter 9), however, frequently have the same symmetry
because they may contain aligned fibres. Materials with the same symmetry
as an orthorhombic crystal are called orthotropic.
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Table 2.2. Number of independent elastic constants for different lattice types (cf.
table 1.2). Names specifying a symmetry rather than a lattice are printed in italics
(e. g., ‘isotropic’ )

lattice type number of
elastic constants

isotropic 2
cubic 3
hexagonal, transversally isotropic 5
tetragonal 6
orthorhombic / orthotropic 9
monoclinic 13
triclinic 21

∗ 2.4.6 Transversally isotropic elasticity

In a transversally isotropic material, there is a plane in which all properties
are isotropic. Perpendicular to this plane, the properties differ. One example
for such a material is a hexagonal crystal which is transversally isotropic with
respect to its mechanical properties.15 Other technically important materials
may also be transversally isotropic, for example directionally solidified met-
als in which the grains have a preferential orientation (see also section 2.5),
or composites (chapter 9) with fibres oriented in one direction, but aligned
arbitrarily (or hexagonally) in the perpendicular plane.

In a coordinate system where the 3 axis is the axis of symmetry, the
compliance matrix (equation (2.31)) looks like this:

(Sαβ) =


S11 S12 S13

S12 S11 S13

S13 S13 S33

S44

S44

2(S11 − S12)



=



1/E1
− ν21/E1

− ν13/E3

− ν21/E1
1/E1

− ν13/E3

− ν31/E1
− ν31/E1

1/E3

1/G13

1/G13

2(1 + ν21)/E1

 .

(2.41)

In this case, we have five independent elastic parameters since there is a
relation between the νij due to the symmetry of the compliance matrix, similar
to that for orthotropic materials: ν21 = ν12 and ν31/E1 = ν13/E3.
15 The crystal lattice itself, however, is only symmetric when rotated by multiples

of 60°.
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Table 2.3. Elastic constants of different single crystals [35,98,105]. Eisotr. is Young’s
modulus of a nearly isotropic polycrystal

cubic materials

material Eisotr. E〈100〉 E〈111〉 A C11 C12 C44

GPa GPa GPa GPa GPa GPa

metals and semi-metals

Al 70 64 76 1.23 108 61 29
Au 78 43 117 1.89 186 157 42
Cu 121 67 192 3.22 168 121 75
α-Fe 209 129 276 2.13 233 124 117
Ni 207 137 305 2.50 247 147 125
Si − 130 188 1.57 166 64 80
W 411 411 411 1.00 501 198 151

ceramics

diamond − 1050 1200 1.20 1076 125 576
MgO 310 247 343 1.54 291 90 155
NaCl 37 44 32 0.72 49 13 13
TiC − 476 429 0.88 512 110 117

hexagonal materials

material Eisotr. C11 C33 C44 C12 C13

GPa GPa GPa GPa GPa GPa

Mg 44 60 62 16 26 22
Ti 112 162 181 47 92 69
Zn 103 164 64 39 36 53

∗ 2.4.7 Other crystal lattices

The number of independent elastic parameters can also be determined for the
other crystal lattices and is listed in table 2.2. Generally, couplings between
shear stresses and normal strains and normal stresses and shear strains can
occur when the number of independent parameters is larger than three. In
this case, a uniaxial stress can cause not only normal strains, but also shear
strains as we already saw for the example of the orthorhombic crystal.

∗ 2.4.8 Examples

Table 2.3 contains an overview of the elastic constants for some metals and
ceramics. As can be seen, the anisotropy factor of tungsten is 1.0, so it is
(almost) isotropic even as a single crystal. For most other materials, almost
isotropic properties can only be found in a polycrystalline state. The direction
dependence of Young’s modulus for selected materials is plotted in figure 2.10.
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(a) Titanium carbide,
A = 0.88

(b) Tungsten, A = 1.00 (c) Aluminium, A = 1.23

(d) Silicon, A = 1.57 (e) Gold, A = 1.89 (f) α iron, A = 2.13

(g) Nickel, A = 2.50 (h) Copper, A = 3.22 (i) Zinc,
E〈0001〉/E〈101̄0〉 ≈ 0.3

Fig. 2.10. Orientation dependence of Young’s modulus for some materials of ta-
ble 2.3. In each spatial direction, the distance of the surface from the origin is a
measure of Young’s modulus
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(a) 20℃ (b) 200℃ (c) 400℃

Fig. 2.11. Microstructure of technical pure aluminium for different mould tempera-
tures (cast temperature 900℃). The resulting preferential crystal orientation is the
more pronounced, the colder the mould is

∗ 2.5 Isotropy and anisotropy of macroscopic components

Single crystals are usually mechanically anisotropic as we saw in the preced-
ing sections. In a polycrystalline material, the grains are frequently oriented
randomly, and the mechanically anisotropic effects are evened out macroscop-
ically. The material is thus approximately isotropic.

However, there are some cases where a macroscopic component can be
anisotropic:

• The component consists of a single crystal. One example are turbine blades
used at extreme thermal loads (see also page 58).

• The grains are not small compared to the dimensions of the component
itself, so there is insufficient averaging.

• The material is a composite with preferred orientation of the reinforcing
phase. Fibre composites are the most important example (see chapter 9).

• During solidification or recrystallisation, a texture is formed in the mate-
rial i. e., the grains have a preferential orientation. This may be due to
thermal gradients during solidification of an alloy (see figure 2.11): Solidi-
fication starts at the coldest point with the formation of a large number of
small nuclei that grow in the direction of the temperature gradient. The
speed of crystal growth depends on the crystal orientation, resulting in
some grains overtaking the others. The final crystal structure is transver-
sally isotropic. This process can be exploited technically to manufacture
directionally solidified materials. One example are turbine blades contain-
ing very long grains oriented in the longitudinal direction of the blade (see
figure 2.12). Why this is done is explained in the next section.

• The grains have rotated due to large plastic deformations (> 50%), pro-
ducing a textured material. The reason for this orientation is that crystals
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Fig. 2.12. Directionally solidified gas turbine blade. The grains are made visible by
etching. Some grains extend over the total length of the blade (385mm). Courtesy
of Siemens ag, Power Generation, Mülheim, Germany

can only deform plastically in certain planes and directions.16 Deforma-
tions of this magnitude are frequently encountered in metal working, for
example drawing or rolling.

∗ How to exploit the elastic anisotropy: Gas turbine blades

Gas turbine blades (figure 2.13(a)) are facing extreme conditions: They have to
withstand large mechanical loads due to centrifugal forces at high temperature.
To at least partly protect the material from the extreme gas temperatures of
1200℃ or more, the blades are cooled from the inside with air of about 500℃.
If the wall of the turbine blade has a thickness of about 2 mm and is exposed
to the process gas with a temperature of 1200℃, its surface temperature
will be about Tout = 1000℃, whereas on the inside it is only Tin = 600℃
(figure 2.13(b)). Due to thermal expansion, the material would expand on
the outside, but is partly constrained by the cooler inside wall. Thus, large
compressive thermal stresses form on the outside and tensile stresses on the
inside. In the middle of the wall, there will be a neutral axis at about Tm =
16 We will discuss this in chapter 6.
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(a) Cut-away view. Courtesy of Lufthansa
Technik ag, Hamburg, Germany

x

600°C

1200°C

800°C

1000°C

500°C

insideoutside

blade wall

¾th(x)

(b) Temperature distribution in the
wall

Fig. 2.13. Gas turbine blade of a jet engine. Cooling channels inside the blade are
used to air-cool the blade

800℃ where thermal stresses vanish. The thermal stress σth at any point x
can be calculated approximately by

σth(x) = E εth = E α
(
Tm − T (x)

)
. (2.42)

Here T (x) is the local temperature. The thermal stress is thus proportional to
the coefficient of thermal expansion α and to Young’s modulus E. If we can
reduce Young’s modulus in the direction of the thermal stresses, the stresses
are reduced, thus either increasing the stress tolerance or allowing to raise
the temperature and thus the efficiency of the turbine. In this context, it is
irrelevant that the elastic deformations due to centrifugal loads increase when
E is reduced, for they are small enough not to compromise the component in
any case.

If we assume, as an example, a turbine blade made of a polycrystalline,
isotropic nickel-base superalloy with Young’s modulus Eisotr. = 200 000MPa
and a coefficient of thermal expansion of α = 15× 10−6 K−1, we can estimate
the stresses at the outside to σth,out = −600 MPa and those at the inside to
σth,in = 600MPa.

Now we manufacture the turbine blade from a single crystal or a direction-
ally solidified material oriented in the 〈100〉 direction with Young’s modulus
of E〈100〉 = 135 000MPa. The thermal stresses at the same temperature are
now σth,out,〈100〉 = −405 MPa, σth,in,〈100〉 = 405MPa. If we assume that the
maximum stress the material can bear is 600 MPa, we can raise the surface
temperature to almost 1100℃ without having to change the material.
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 0
r0(0K)            r0(T2) r

U

0 K

T2 > 0 K

Uth

mean distance

Fig. 2.14. Interaction potential between two atoms. When the temperature is in-
creased, additional thermal energy Uth is available. The asymmetry of the potential
well causes an increase of the average atomic distance
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Fig. 2.15. Temperature dependence of Young’s modulus for some metals [18]

2.6 Temperature dependence of Young’s modulus

In this section, we will discuss the temperature dependence of Young’s modu-
lus in metals and ceramics; polymer elasticity will be dealt with in chapter 8.

At typical service temperatures, which are usually smaller than half the
melting temperature Tm measured in kelvin (T < 0.5 Tm, [T ] = K), some rules-
of-thumb can be stated for the temperature dependence of Young’s modulus.
In metals, the temperature dependence of Young’s modulus EM is rather large:

EM(T ) ≈ EM(0K) ·
(

1− 0.5
T

Tm

)
. (2.43)

Here, EM(0 K) is Young’s modulus at 0 K. Some experimentally determined
values are shown in figure 2.15. The temperature dependence of Young’s mod-
ulus of ceramics is smaller [51]:
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Fig. 2.16. Young’s modulus versus melting temperature in some metals [18, 143]

EK(T ) ≈ EK(0 K) ·
(

1− 0.3
T

Tm

)
. (2.44)

We can understand the temperature dependence from the properties of
the atomic bond discussed in section 2.3. Raising the temperature increases
the energy of the atoms by a temperature-dependent amount Uth. The atoms
start to oscillate around their equilibrium position. The amplitude of the
oscillations can be estimated by adding the thermal energy to the energy in the
minimum of the potential well as sketched in figure 2.14. Because the repulsive
interaction is shorter-ranged than the attractive interaction, the slope is larger
on the left side of the well. The mean distance of the atoms thus grows when
the temperature is raised. This explains the phenomenon of thermal expansion.

Due to thermal expansion, the mean equilibrium position of the atom is
at a position in the potential well where the slope of the force curve and thus
the stiffness is smaller – Young’s modulus is reduced.

This simple model relates thermal expansion and the reduction of the elas-
tic modulus with increasing temperature. It is confirmed by the fact that met-
als have a larger temperature dependence of Young’s modulus than ceramics
and also a larger coefficient of thermal expansion.

The reason for this is the larger bond length of the metallic bond. Because
it is based on electrons in a widely spread electron gas, the interaction energy
does not decrease as strongly with increasing distance as in a covalent bond
that involves only two atoms. The range of the ionic bond is also rather small
because the electric field is shielded by the neighbouring ions of different
charges.

As a rule-of-thumb, we can state that within each class of materials,
Young’s modulus is roughly proportional to the melting temperature:
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E ∼ Tm . (2.45)

This relation can also be explained with the help of figure 2.14. The energy
needed to melt the material is roughly proportional to the depth of the po-
tential well because the bonds have to be sufficiently dissolved to allow free
movement of the atoms. The deeper the potential well is, the steeper are its
sides, for the range of the attractive and repulsive forces are roughly the same
for all materials within a certain class. As the second derivative of the energy
determines the elastic properties, materials with a larger bond energy have
to have a larger elastic modulus. In figure 2.16, the relation between melting
temperature and Young’s modulus is sketched.
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Plasticity and failure

In this chapter, we will discuss plasticity phenomenologically, without dis-
cussing the particular mechanisms of different materials. These will be treated
in chapters 6 to 9.

In contrast to elastic deformations (chapter 2), plastic deformations are
irreversible. Upon unloading, a plastically deformed material will not return
to its original state. In reality, an elastic deformation is superimposed to any
plastic deformation so that the elastic part of the deformation will revert, but
the plastic part remains. For this reason, one important problem in investigat-
ing the deformation of materials is to distinguish between elastic and plastic
parts of the strain.

Similar to elastic deformations, plastic deformations can be time-dependent
or time-independent. In this book, the term plasticity always implies time-
independent deformation. Time-dependent plastic deformation will be de-
noted as viscoplasticity or creep. This will be discussed in chapter 11 for the
case of metals and ceramics, and in chapter 8 for polymers.

Plastic deformation allows to form components or semi-finished parts dur-
ing manufacturing, with processes like rolling, deep drawing, or forging. Dur-
ing service, plastic deformation is usually to be avoided because the deforma-
tions are normally large. Thus, the occurrence of plastic deformations can be
used as a failure criterion in designing components. On the other hand, plastic
deformations can increase the safety of a component, for they may be detected
before the material fails completely, thus leaving room for countermeasures.

Because large strains can occur during plastic deformation, we will start
the chapter by discussing the notion of strain if strains become large. The plas-
tic behaviour of materials is usually measured during a tensile test, discussed
in detail in section 3.2. Next, we will consider the methods of continuum me-
chanics to describe the limit between elastic and plastic behaviour, plastic
deformation, and hardening effects observed in plasticity (section 3.3). An-
other important material parameter, hardness, will be discussed in section 3.4.
Finally, we will discuss different failure mechanisms leading to catastrophic
rupture of materials.
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3.1 Nominal and true strain

In section 2.2.2, the strain ε was defined as quotient of the change in length ∆l
and the initial length l0:

ε =
l1 − l0

l0
=

∆l

l0
. (3.1)

This is a sensible definition in the case of elastic deformations because the
initial, undeformed state (length l0) is a reference state the material returns
to upon unloading.

During plastic deformation, atoms within the material rearrange, and the
initial state of the material is not retained. Therefore, it is not helpful to
relate all deformations to the initial state. Instead, strains should be calculated
relative to the current state of the material. If, for example, a specimen is
plastically lengthened and compressed to its original length, it seems to be
in the original state macroscopically, but, usually, not all of the atoms have
returned to their initial positions. This shows that the current state of the
material depends not only on the current strain, but also on the deformation
history.

In metals, for example, the states before and after the plastic defor-
mation can usually be distinguished macroscopically, for the stress
needed for further plastic deformation (called the yield strength, see
section 3.2) usually increases. To describe the deformation history, a
plastic equivalent strain ε

(pl)
eq is defined, which always increases during

plastic deformation. This equivalent strain is non-zero after the defor-
mation. It will be discussed in section 3.3.5.

A further reason not to relate plastic deformations to the initial length is that
they are usually large. Especially in the case of several deformation steps, this
would lead to incorrect results for the strains (see the example on page 65).

If the strain ε is calculated relative to the initial state of the material, it
is called nominal strain to distinguish it from the so-called true strain ϕ.

To calculate the true strain ϕ, we assume that the strain is applied incre-
mentally in infinitesimally small steps. In each step, the infinitesimal length
change dl is related to the current length l. At each time, the increment in
the true strain dϕ is, analogous to equation (3.1):

dϕ =
(l + dl)− l

l
=

dl

l
. (3.2)

For very small (infinitesimal) strains, this is identical to the nominal strain.
To calculate the total true strain ϕ, the increments dϕ have to be integrated:

ϕ =
∫ l1

l0

dl

l
= ln

l1
l0

= ln
(

1 +
∆l

l0

)
= ln(1 + ε) . (3.3)
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"1 = 0.500, '1 = 0.405

"2 = 0.333, '2 = 0.287

"1 + "2 = 0.833, '1 + '2 = 0.693

(a) Deformation in two steps

"12 = 1.000, '12 = 0.693

(b) Deformation in one step

Fig. 3.1. Comparison of nominal and true strain for a deformation of a tensile
specimen in one or two steps, respectively. In total, the length is doubled during
the deformation. The nominal strain differs (ε1 + ε2 6= ε12) while the true strain is
identical (ϕ1 + ϕ2 = ϕ12) for both deformation sequences

The difference between true and nominal strain can be explained using the
example of two identical specimens, deformed in different steps as shown in
figure 3.1.

The first specimen is lengthened from its initial length l0 to a length l1 =
1.5 l0 (i. e., ∆l = 0.5 l0), corresponding to a nominal strain of

ε1 =
∆l

l0
=

0.5 l0
l0

= 0.5

and a true strain of

ϕ1 = ln
1.5 l0

l0
= 0.405 .

During further deformation, it is lengthened again by ∆l = 0.5 l0 to a total
length of l2 = 2 l0. This deformation is described by the following strains:

ε2 =
∆l

1.5 l0
=

0.5 l0
1.5 l0

= 0.333 ,

ϕ2 = ln
2 l0

1.5 l0
= 0.287 .

If we assume that subsequent strains can be added, the following total strains
result (see also figure 3.1(a)):

ε1 + ε2 = 0.833 ,

ϕ1 + ϕ2 = 0.693 .

The second specimen is lengthened in a single step from l0 to 2 l0 (i. e.,
∆l = l0), resulting in the strains (figure 3.1(b)):

ε12 =
l0
l0

= 1.000 ,
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ϕ Fig. 3.2. Comparison of nominal and true
strain

ϕ12 = ln
2 l0
l0

= 0.693 .

If we compare the calculated strains of both specimens, which have the
same length initially and eventually, the true strains are identical (ϕ = 0.693),
but the nominal strains are not (0.833 6= 1.000). Only by using the true strains
can identical strain values be calculated independent of the deformation his-
tory. The distinction between true and nominal strain is also discussed in
exercise 7.

Mathematical considerations

If we expand the relation between nominal and true strain, equation (3.3), in
a Taylor series and cut off after the second term, we find

ϕ = ln(1 + ε) ≈ ε− 1
2
ε2 .

For small strains ε � 1, we can neglect ε2 and we find ϕ ≈ ε. In this case,
the nominal strain ε is a good approximation to the true strain ϕ, see also
figure 3.2. In general, the true strain is smaller than the nominal strain in the
tensile region (positive strains) and larger in the compressive region (negative
strains).

∗ Multiaxial large deformations

In the form defined in this section, the true strain ϕ can only be used for nor-
mal strains, but it cannot describe large shear deformations. To describe large
and arbitrary deformations in more than one dimension, several approaches
can be used [16,67,80]. They are all based on a matrix, called deformation gra-
dient F . The deformation gradient is similar to a coordinate transformation
from the undeformed to the deformed state.
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time t0

d»

time t

dx = F d»

Fig. 3.3. Movement of the connecting line be-
tween two material points during a deformation
(after [16])

To define the deformation gradient, we define a coordinate system for
the undeformed material (at time t0) that associates each point in
the material with a coordinate ξ. Using this coordinate system, the
vector between two neighbouring points at time t0 is given by dξ. This
coordinate system remains fixed in space during the deformation i. e.,
neither its size, orientation, or origin change. Before performing the
deformation, we define a second coordinate system, described by x,
that is identical to the ξ system at time t0. This second system moves
and deforms together with the material (see figure 3.3) and thus is,
for example, not orthogonal after the deformation. The transformation
from one system to the other can be done by a position-dependent
matrix, the deformation gradient F (ξ). For the vectors connecting two
points, dξ and dx in the two coordinate systems, we find

dx = F (ξ) dξ or dxi = Fij(ξ) dξj .

The position-dependence of the deformation gradient is given by

Fij(ξ) =
∂xi(ξ, t)

∂ξj
. (3.4)

The deformation gradient F contains not only information about the defor-
mation, but also about rigid-body rotations of the material. These, however,
do not contribute to the deformation itself, and the two contributions thus
have to be separated. This can be done by considering the deformation gradi-
ent as a composition of a deformation U , called the right stretch tensor (or,
sometimes, material stretch tensor) and a subsequent rotation R. These two
are multiplied using the tensor product:

F = R U (3.5)

The right stretch tensor U can be calculated from F by

U2 = FTF . (3.6)

Although the deformation is described by U , other measures of strain can
be useful. One example is provided by Green’s strain tensor G, defined as

G =
1
2
(U2 − 1) =

1
2
(FTF − 1) . (3.7)
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Fig. 3.4. Tensile test specimen (type B) with circular cross section with nominal
diameter d0 = 8mm and original gauge length L0 = 40mm (designation: Tensile
test piece din 50 125-b 8×40)

Green’s strain tensor vanishes in an undeformed system: G = 0. For small
deformations, it converges to the strain tensor ε, defined in section 2.2.2.

If we write G element-wise for the displacements u, we find (the calcu-
lation can be found in Bathe [15], for example)

Gij =
1

2

„
∂ui

∂ξj
+

∂uj

∂ξi

«
+

1

2

∂uk

∂ξi

∂uk

∂ξj
. (3.8)

For small deformations, the terms of the form ∂uk/∂ξi are small. The
product in the second term thus becomes small and can be neglected.
For small deformations, Green’s strain tensor thus converges to ε.

3.2 Stress-strain diagrams

3.2.1 Types of stress-strain diagrams

The elastic-plastic behaviour of materials is frequently described by stress-
strain curves measured in tensile tests. Tensile tests are used to determine
material parameters that are then listed in tables, for example in iso standards.
These parameters are used in selecting materials and in component design.
Even if the shape of the component is complex and the stress state multiaxial,
criteria can be used that allow to employ the parameters determined in tensile
tests. We will see in section 3.3 how this is done in the case of plasticity.

In a tensile test, the specimen is lengthened at constant speed, and the
extension ∆L and the required force are measured. To make results compa-
rable, standardised specimens are used (see figure 3.4 for an example). Most
common specimens have a spherical cross section, with a diameter that is con-
stant along the gauge length. To avoid failure at the clampings, the specimen
is made thicker there, and the transition between the different diameters is
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smooth to avoid abrupt changes in cross section because these would cause
stress concentrations and might induce localised failure (see chapter 4).

To transform the measured quantities (force F and extension ∆L) to mate-
rial parameters, the nominal stress σ and the nominal strain ε are calculated:

σ(∆L) =
F (∆L)

S0
, (3.9)

ε(∆L) =
∆L

L0
. (3.10)

S0 is the original cross-sectional area, and L0 is the initial gauge length. 1 The
stress measure σ in equation (3.9) is not the true stress in the material, for
it is always calculated based on the original cross-sectional area S0, whereas
the cross section of the specimen changes during the test. This is the reason
for the term nominal stress. The actual stress in the material in a tensile test
is called the true stress σt.

The shape of the stress-strain curves obtained in tensile tests differs be-
tween the different material classes. The characteristic shapes are summarised
in figure 3.5.

The stress-strain curves of most metals are of the type shown in fig-
ure 3.5(a). The specimen behaviour is almost purely elastic behaviour initially,
with the slope of the stress-strain curve being equal to Young’s modulus E.
With increasing deformation, plastic deformation (also called yielding) grad-
ually starts, but it is not possible to determine the exact point when yielding
sets in. In most engineering applications, it is assumed that a plastic – and
thus permanent – deformation of 0.2% can be tolerated. Thus, a plastic defor-
mation of 0.2% is used to define the stress where plastic deformation starts.
This stress is called the yield strength Rp0.2 (ys, sometimes σY) of the mate-
rial.2

To determine the plastic strain, the elastic part has to be subtracted from
the total strain. As we saw in section 2.3, elastic deformations are due to
a change in the bond length between the atoms. Upon unloading, the atoms
return to their equilibrium positions, and the elastic strain becomes zero. Since
the change in bond length is independent of the rearrangement of the atoms
during plastic deformation, the slope of the stress-strain curve upon unloading
is given by Young’s modulus.3 However, the rearrangement of the atoms shifts
1 Terms are taken from en 10 002-1.
2 According to en 10 002-1, this stress is called 0.2% proof strength, but in

astm e 8m it is called yield strength (offset 0.2%). Since we will in many cases not
need to distinguish between materials where yielding starts gradually and those
where there is an apparent yield point (described below), we will use the term
‘yield strength’ in the following.

3 In reality, there is a slight deviation in the slope due to the reduction in the
cross-sectional area of the specimen that is caused by plastic deformation (see
section 3.2.2).
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Fig. 3.5. Types of stress-strain curves (after [48])

the elastic line to the right because the equilibrium positions are not the same
as prior to the deformation. To determine the stress required for a permanent
plastic strain of 0.2%, we have to draw a line parallel to the straight part of
the loading curve at a distance of 0.2% strain (see figure 3.6). Its intersection
with the measured stress-strain curve determines the yield strength.

Upon further elongation of the specimen, the nominal stress σ increases
and reaches a maximum value. This value is called the tensile strength Rm of
the material (sometimes also known as ‘ultimate tensile strength’, uts, σUTS).
At this point, the specimen starts to neck i. e., the reduction of its cross sec-
tion localises in some part of the gauge length where the material is weaker
than elsewhere (e. g., because of a tool mark, a slight deviation in the initial
cross section, or a cavity). Locally, the stress increases and the cross section
of the specimen reduces further in the necking region because plastic defor-
mation is concentrated here. Although the true stress in the necking region
still increases, the external force and thus the nominal stress σ decrease, for
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Fig. 3.6. Unloading during a tensile test. The slope of the unloading curve is nearly
identical to the initial elastic slope at the beginning of the test. The yield strength
Rp0.2 is determined by drawing a straight line parallel to the initial elastic line at a
distance of ε = 0.2% and by identifying the intersection point with the stress-strain
curve

the latter is calculated using the original cross-sectional area.4 To ensure sta-
ble deformation of the specimen even after the force decreases, tensile tests
are usually strain-controlled. The part of the specimen outside of the neck-
ing region is unloaded due to the decrease in the force and does not deform
plastically anymore.

The tensile test finally stops when the specimen ruptures. The elongation
of the specimen at this point is measured relative to the original gauge length.
Thus, the elongation after fracture A is defined as A = ∆L/L0. Frequently, A
is characterised by a subscript k, defined as k = L0/

√
S0. For the two common

specimen dimensions L0 = 5 d0 and L0 = 10 d0, k takes the values k = 5.65
and k = 11.3, and the elongation after fracture is denoted as A5.65 and A11.3,
respectively. The standard en 10 002-1 permits to use the shorthand A for
A5.65.

The ability of a material to deform plastically before fracture is called
its ductility. The larger the elongation after fracture, the more ductile is the
tested material. Materials with low ductility are called brittle.

The stress level that the material can withstand before failure is called its
strength. Whether the yield strength Rp0.2 or the tensile strength Rm of the
material is used as a failure criterion depends on the application in question.
In chapters 5, 10, and 11, further failure mechanisms and criteria to measure
material strength will be defined.

The plastic behaviour of some metals, especially plain carbon steels, de-
viates from that described so far. Their stress-strain curve shows a so-called
apparent yield point (also known as yield point phenomenon) (figure 3.5(b)):
4 This will be investigated in more detail in section 3.2.2.
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They are almost completely elastic until the upper yield strength ReH (uys)
is reached. At this stress, plastic deformation sets in rather suddenly, which
is localised in so-called Lüders bands or flow lines. While the stress oscillates,
these lines extend until they cover the whole specimen. The lowest stress oc-
curring during this process is called lower yield strength ReL (lys).5 Why this
localised plastic deformation occurs, will be explained in section 6.4.3. After
the specimen has plastified completely, it behaves identical to a metal without
apparent yield point.

Polymers can also exhibit different types of stress-strain curves (see fig-
ure 3.5(c)). Some polymers have an initial maximum of the stress-strain curve
(curves 2 and 3), (apparent yield point) called yield strength σY, with a corre-
sponding yield strain εY. The stress then drops to a smaller value. Fracture
occurs at the rupture strength σB and the rupture strain εtB, with varying
shapes of the curve in between. The maximum stress in the stress-strain curve
is used to define the tensile strength σM. For curve 2, we thus find σM = σB,
in curve 3, σM = σY holds. The strain at the tensile stress is called εM if
the tensile strength is identical to the yield strength (curve 3), and εtM, if the
tensile strength is larger than the yield strength (curve 2). If there is no initial
maximum of the stress-strain curve (as in curve 1 for a brittle and curve 4
for a ductile polymer), the stress increases monotonically until fracture. The
rupture stress is identical to the tensile strength in this case, σB = σM. The
strain at rupture is denoted as εB = εM. Contrary to metals, the strains (εY,
εB, εtM, εM) are not calculated for the unloaded state, but for the loaded
state and thus include elastic strains.6 The mechanisms causing the different
shapes of the curves will be the subject of chapter 8.

In brittle materials, especially in ceramics, there is no or at most very
limited plastic deformation. They are elastic until final fracture (figure 3.5(d)).
The stress at fracture defines the tensile strength Rm.

Energy is required for plastic deformation, which is partially stored in the
material, but mostly dissipated as heat. The specific plastic energy, the energy
required during plastic deformation per unit volume, corresponds to the area
beneath the stress-strain curve (shown in grey in figure 3.6). According to
equation (2.18), we find

w(pl) =
∫

σ ·· dε(pl) =
∫

σij dε
(pl)
ij , (3.11)

with ε(pl) being the plastic strain.
Some exemplary stress-strain curves of different materials are compared

in figure 3.7. The initial region is printed separately because otherwise the
elastic part of the curves could not be discerned.
5 In determining ReL, the first minimum of the stress is not taken into account

because it is usually caused by an overshooting effect within the testing bay.
6 To simplify the discussions in this book, we will usually use the symbols Rp0.2

and Rm even for polymers, although the standard prescribes σY and σM.
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Fig. 3.7. Stress-strain curves of various materials (after [44, 91, 101]); the left plot
shows the initial region in more detail. Al2O3 and Si3N4 are ceramics. S 355 is
a plain carbon steel (old designation St 52), X 5CrNi 18-10 is an austenitic steel.
Polymethylmethacrylate (pmma) and polyethylene (pe) are polymers

3.2.2 Analysis of a stress-strain diagram

In a tensile test, the following material parameters are determined: Young’s
modulus E, yield strength Rp0.2 or upper yield strength ReH and lower yield
strength ReL, tensile strength Rm, and elongation after fracture A. In this
section, we will discuss how they can be determined and interpreted, using
the example of a ductile metal.

In tensile tests, force-displacement curves are measured. Using the original
cross-sectional area S0, the nominal stress σ(∆L) is calculated from the force
F (∆L), and the nominal strain ε(∆L) is calculated by dividing the extension
∆L by the initial gauge length L0 (see equations (3.9) and (3.10)).

For small strains, the slope of the stress-strain curve corresponds to
Young’s modulus E. However, it has to be taken into account that the initial
part of the curve is not straight and usually has a smaller slope (figure 3.8) be-
cause of setting processes in the clampings and other initial effects. In metals
without an apparent yield point, yielding starts gradually, rendering it difficult
to determine the end of the straight line marking elastic behaviour. For these
reasons, it can be rather difficult to exactly determine Young’s modulus from
the stress-strain curve. To alleviate this problem, the specimens are sometimes
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Fig. 3.8. Determination of Young’s modulus E = 217 797 MPa in a tensile test for
S 355. The parts near the origin and shortly before yield must not be taken into
account for calculating Young’s modulus (the boundaries used are marked by ver-
tical lines). Data: Courtesy of Institut für Werkstofftechnik, Universität Gh Kassel,
Germany

loaded slightly beyond their yield strength and then unloaded. The slope of
the unloading curve corresponds more closely to Young’s modulus than that
of the initial loading curve.

Young’s modulus can also be determined in other ways. One possibility
is to measure the resonant frequency of a vibrating beam because this
frequency is determined by the sonic speed c =

p
E/%. Two advantages

of this method are that very small amplitudes are sufficient and that
frequencies can be measured electronically with high precision.

In metals with an apparent yield point, the transition between elastic and
plastic behaviour is easy to detect by the corresponding drop in the stress
(figure 3.5(b)). Otherwise, the state at which yielding starts cannot be spec-
ified precisely because yielding sets on gradually. In engineering, a practical
approach is taken, using 0.2% plastic deformation to define the yield strength
Rp0.2.

During plastic deformation, the specimen’s cross-sectional area changes
significantly. Therefore, the nominal stress differs from the true stress σt that
is defined as the quotient between the external load F (∆l) and the current
cross-sectional area S(∆L):

σt(∆L) =
F (∆L)
S(∆L)

. (3.12)

During plastic deformation, the true stress in the material is the stress required
to cause further plastic flow in the material. Therefore, it is called the flow
stress σF.
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Fig. 3.9. Strain measurement in a tensile test

The current cross-sectional area S(∆L) can be calculated approximately if
we assume that the volume of the specimen remains unchanged during plastic
deformation and that the volume change due to elastic deformation is small.7
If the volume is constant, we can write

S(∆L) · L(∆L) = S0 · L0 = const .

Using equation (2.4), a relation to the nominal strain ε can be found:

S(∆L)
S0

=
1

1 + ε(∆L)
. (3.13)

This approximation is valid if the cross-sectional area is constant over the
whole gauge length L. The true stress

σt = σ (1 + ε) (3.14)

is thus larger than the nominal stress σ because of the reduction in area.
The specimen extension ∆L is usually measured using a strain gauge that

is fixed to the specimen using two knife edges with a distance L0 as shown in
figure 3.9. All measured strain values are thus averages over the gauge length.
As long as the specimen elongates uniformly on its whole length, it does not
matter where and over what distance the extension and thus the strain is
measured.

As soon as necking begins in the specimen, the results differ strongly de-
pending on the region used for the measurement because plastic deforma-
tion is concentrated in the necking region. This is illustrated in figure 3.10.
Figure 3.10(a) shows the unloaded specimen with three different strain gauges.
7 At least in the case of metals, these assumptions are correct.
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Fig. 3.10. Sketch of a tensile test with strain gauges with different positions of the
knife edges. The subscripts are used as follows: glob for the global strain, li for the
local strain inside the necking region, and lo for the local strain outside the necking
region.
As long as no necking occurs, all measured strains are equal e. g., in figure 3.10(b):
εglob,1 = εli,1 = εlo,1 = 0.42. As soon as necking occurs, the obtained value depends
on the position and gauge length e. g., in figure 3.10(c): εglob,2 = 0.60, εli,2 = 1.19,
and εlo,2 = 0.42

In figure 3.10(b), the state is prior to necking, and all three strain gauges agree
in the measured values. In figure 3.10(c), necking has started and plastic de-
formation is concentrated in this region. The strain εlo outside of the necking
region has changed only slightly compared to figure 3.10(b). The large strain
gauge (strain εglob) includes the plastic deformation within the necking region.
However, its measurement range also includes a large part of the specimen that
is almost unchanged compared to figure 3.10(b). Therefore, εglob,2 is smaller
than εli,2 because the measurement range of the latter contains mainly the
necking region. For this reason, it is necessary to state the ratio of initial
gauge length L0 and the original diameter d0 or the cross-sectional area S0 in
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tesy of Institut für Werkstofftechnik, Universität Gh Kassel, Germany

values given for the elongation after fracture. For example, A11.3 corresponds
to a ratio L0/

√
S0 = 11.3 (see page 71).8

Figure 3.11 shows experimental values measured with the different strain
gauges. The curve marked εglob is the stress-strain curve measured using the
large strain gauge. The curve marked εlo,9 measured outside of the necking re-
gion, shows the unloading of the specimen in this region with no further plastic
deformation. The material elastically contracts due to the load reduction so
that the almost vertical curve in fact has a slope that is approximately equal
to Young’s modulus. The curve marked εli shows that plastic deformation in
the necking region is much larger than the global strain suggests.10

In the necking region, the cross-sectional area S(∆L) of the specimen
decreases strongly, causing a decrease in the external force F (∆L) and the
nominal stress σ(∆L) as well. Calculating the stress by dividing the external
force by the original cross-sectional area is not meaningful anymore. To calcu-
late the true stress σt from equation (3.12), the approximation formula (3.13)
can be used initially if the measurement range is short and restricted to the
necking region, for the assumption of a homogeneous cross section is then
still valid. With increasing necking, the approximation becomes increasingly
worse.

The true strain was defined in section 3.1 as
8 If the cross section is circular, this implies L0/d0 = 10.
9 εlo was defined in figure 3.10.

10 Modern measurement methods allow to distribute a large number of measurement
ranges over the whole specimen and measure simultaneously in all of them. One
example of such a method is laser extensometry, where the elongation is measured
using a laser.
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Fig. 3.12. Plots of the nominal and the true stress versus the global strain. The
true stress σt is calculated using the approximation (3.13) for a short segment in
the necking region. This equation is not valid anymore as soon as necking is strong.
Thus, the true stress appearing at the thinnest position within the necking region
is larger than the calculated value, given as estimation

ϕglob = ln(1 + εglob) = ln
Lglob

L0
.

Nominal and true stress-strain curve are compared in figure 3.12. The true
curve is above the nominal one because the cross section of the specimen de-
creases. Close to the end of the test, when necking becomes more and more
pronounced, the approximated ‘true’ curve decreases again. Its stress values
do not correspond to the real stress at the thinnest part of the specimen.
The reason for this is that the approximation formula overestimates the cross-
sectional area due to the strong necking and the measurement range which is
too large. The stress at the narrowest part of the necking region still increases
in most cases, for the flow stress of metals usually increases with increasing de-
formation. This is called work hardening. Sometimes, the flow stress decreases
and the material softens. This will be discussed at the end of this section.

The stress state within the necking region is triaxial, with a radial stress σr

and a circumferential stress σc in addition to the longitudinal stress σl.11 This
stress state, sketched in figure 3.13, varies over the cross section: All stress
components are maximal in the centre of the specimen, with the circumferen-
tial and the radial stress, σc and σr, being identical close to the centre and
differing slightly near the specimens surface [90]. The difference between the
stresses σl − σc and σl − σr is almost constant throughout the specimen.
11 This must not be confused with the stress state near notches, addressed in chap-

ter 4. If notches are present, the stress state is usually (almost) purely elastic, but
here the material yields over the whole cross section. The stress states in the two
cases are completely different.
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Fig. 3.13. Stress state of triaxial tension in the necking region (after [90]). The
stated stress components are the longitudinal stress σl, circumferential stress σc,
and the radial stress σr

The reason for this is that the specimen yields everywhere in the cross
section. The so-called yield criterion, defined in section 3.3.1 below,
has to be fulfilled. If the Tresca yield criterion is used, the difference
between smallest and largest stress has to be identical for the specimen
to yield everywhere.

The plastic deformation of the specimen is largest in its centre, contrary to
what might be assumed from its appearance (see figure 3.14).

The final fracture of the specimen occurs either by drawing down the ma-
terial to a line or a point (tip), by a cup-and-cone fracture, or by a shear-face
fracture [90] (figure 3.15). If the specimen is drawn down to a point, neck-
ing proceeds continuously until the cross section is reduced to zero. Very large
plastic deformations can occur in this case which is thus restricted to materials
with high ductility. In technical alloys, cup-and-cone fracture is predominant
due to the formation of microcracks within the specimen.12 A shear-face frac-
ture can be favoured by different circumstances: Bending, for example due to
imprecise clamping of the specimen or due to the specimen geometry (e. g.,
in wire ropes), can initiate shear-face fracture. Shear-face fracture can also
occur if the specimen softens during plastic deformation. This may happen
12 Usually, cup and cone parts can be found on both pieces of the specimen. A

complete cup and cone as shown in figure 3.15(b) is rare.



www.manaraa.com

80 3 Plasticity and failure

0.06

0.13

0.20

0.27

0.34

0.41

0.48

0.55

0.62

0.69

0.76

0.83

0.90

0.97

"
V

(pl)

Fig. 3.14. Plastic strain in a necked tensile test specimen. The maximal deformation
occurs within the necking region in the centre of the specimen. The used measure for
the plastic strain is the equivalent plastic strain ε

(pl)
eq which provides a quantitative

measure for the total plastic deformation (cf. section 3.3.5)

(a) Pure aluminium tensile test
specimen drawn to a point
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Fig. 3.15. Types of fracture for ductile tensile test specimens [90]
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in materials with strong temperature-dependence of the flow stress due to
the heat generated in plastic deformation [90]. The mechanisms of specimen
failure will be discussed in more detail in section 3.5.

3.2.3 Approximation of the stress-strain curve

To ease the calculation of plastic deformations, stress-strain curves are fre-
quently approximated using simple equations. One commonly used example
is the Ramberg-Osgood law

ϕ =
σt

E
+

(σt

K

)1/n

. (3.15)

K is a parameter describing the absolute stress level and n is called the strain
hardening exponent. Figure 3.16 shows the stress-strain curve of the aluminium
alloy AlMgSi 1 compared with the approximation.

If plastic deformations are large, as it is the case in metal working pro-
cesses like deep drawing or forging, the elastic part of the deformation can be
neglected and the law simplifies to

σt = Kϕn . (3.16)

If n = 0, there is no hardening and the flow stress is constant at a value
σt = K. This is called perfectly plastic behaviour (see section 3.3.5). With
increasing hardening exponent, the hardening increases. As we will see in
section 6.4.1, the stress increase due to hardening, ∆σt, is similar for different
materials within the same material class and does not depend strongly on the
yield strength. Thus, the relative hardening, ∆σt/σt, is larger in low-strength
materials. Applying this to equation (3.16), we see that the constant K is small
in low-strength materials, but n is large, whereas the situation is reversed in
high-strength materials. Common values for n are in the range between 0.1
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and 0.45. The constant K is a measure of the strength. It is not equal to the
yield or tensile strength, but to the strength extrapolated to a strain of ϕ = 1.

Using this approximation, the strain ϕneck at which necking of the speci-
men sets in can be estimated.

Necking occurs when hardening of the material is not sufficient anymore
to compensate for the reduction of the cross-sectional area so that the
force transferred by the cross section decreases. At this moment, the
external force does not increase further: dFneck/dϕneck = 0. Using the
true stress σt, we can write F = σtS. If we form the differential dF/dϕ,
the onset of necking is characterised by13

dFneck

dϕneck
= σt,neck

dSneck

dϕneck
+ Sneck

dσt,neck

dϕneck
= 0 .

This yields

1

σt,neck

dσt,neck

dϕneck
= − 1

Sneck

dSneck

dϕneck
. (3.17)

If we neglect elastic strains, the volume V = S L of the specimen has
to remain constant during plastic deformation (and thus also at the
onset of necking):

dVneck

dϕneck
= Sneck

dLneck

dϕneck
+ Lneck

dSneck

dϕneck
= 0 .

Rearranging this equation and using the definition of the true strain
increment, equation (3.2), we find

− 1

Sneck

dSneck

dϕneck
=

1

dϕneck

dLneck

Lneck
=

dϕneck

dϕneck
= 1 . (3.18)

Inserting equation (3.18) into equation (3.17) yields

dσt,neck

dϕneck
= σt,neck . (3.19)

If we differentiate equation (3.16), describing the stress-strain curve,
with respect to the strain, the result

dσt,neck

dϕneck
= n ·K · ϕn−1

neck = n
Kϕn

neck

ϕneck
= n

σt,neck

ϕneck

can be inserted in equation (3.19) to arrive at

σt,neck = n
σt,neck

ϕneck
.

13 We assume that necking has not yet set in so that the cross section is still the
same everywhere.
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Table 3.1. Hardening exponents of some materials [18, 88]. This table shows that
equation (3.20) is nearly fulfilled by these materials. The material parameters vary
strongly depending on the applied heat treatment

material ϕneck n Rp0.2, ReH/MPa Rm/MPa

S 235 JR (St 37-2) 0.21 0.22 235 430
E 335 (St 60-2) 0.15 0.17 335 650
X5CrNi 18-10 0.39 0.38 185 600
AlMg 5 0.19 0.19 80 180
CuZn 36 (brass) 0.40 0.42 180 330

From this calculation, the condition for the onset of necking is

ϕneck = n . (3.20)

This equation shows that there is a relation between the maximum strain
or maximum deformation of the specimen and the hardening. High-strength
materials with a large yield strength, but smaller hardening exponent n than
low-strength materials, are thus normally less ductile. Table 3.1 shows the
material parameters of some metals.

3.3 Plasticity theory

In the previous sections, we saw that a material deforms elastically if it is
loaded with increasing stress, and then it yields gradually or suddenly. During
plastic deformation, the flow stress frequently increases because of hardening.
All considerations so far were only valid for tensile tests with uniaxial stresses.
Because real-world components are seldom subjected to uniaxial stresses only,
laws to describe yielding, deformation, and hardening have to be defined for
multiaxial stress states as well. This is especially important if components
are designed using numerical methods, for example the method of finite ele-
ments [15,63]. Obviously, it is not feasible to perform experiments that cover
all possible stress states in a material. Therefore, the idea is to find ways to
use parameters determined in tensile tests (Rp0.2, for example) in the case of
multiaxial loads as well.

All approaches discussed in this section have been derived phenomenolog-
ically. They are based on the theory of continuum mechanics and thus do
not explicitly include the microscopic mechanisms occurring in the different
material classes. Furthermore, isotropic behaviour is assumed because most
materials, especially metals, are polycrystalline, and their macroscopic prop-
erties are thus averaged over many grains.

Yield criteria, the subject of sections 3.3.1 to 3.3.3, describe the transition
between elastic and plastic behaviour for arbitrary stress states. Next, we
will study flow rules that can be used to calculate how the material deforms.
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How the flow stress changes during plastic deformation can be described using
hardening laws, the topic of section 3.3.5.

3.3.1 Yield criteria

Yield criteria are mathematical tools to decide whether the stress state in a
material will cause plastic deformation or not. In a polycrystalline metallic
tensile test specimen, which can be assumed to be isotropic and uniaxially
loaded, the material yields at a stress14

σ = Rp . (3.21)

Equation (3.21) is thus the yield criterion for this case.
If the stress state is multiaxial, the stress at yielding cannot be determined

as easily. One possibility to do so is to calculate a scalar equivalent stress σeq

from the six components of the stress tensor (see section 2.4.2) and to compare
this with a critical stress σcrit. The material yields if the equivalent stress
reaches the critical value:

σeq(σ11, σ22, σ33, σ23, σ13, σ12) = σcrit (3.22a)

or, in a short-hand notation,

σeq(σij) = σcrit . (3.22b)

Usually, yield criteria are stated in the form

f(σij) = 0 , (3.23)

where f is defined by f(σij) = σeq(σij) − σcrit. If f(σij) < 0, the material
deforms only elastically, if f(σij) = 0, it yields. In the uniaxial case, equa-
tion (3.21) becomes

f(σ) = σ −Rp = 0 .

Most commonly used materials are isotropic (see section 2.5). In this case,
the orientation of the load does not matter for the yield criterion. Since the
principal stresses describe a stress state σ completely, excepting only its orien-
tation, equation (3.23) can be rewritten using principal stresses if the material
is isotropic:15

f(σ1, σ2, σ3) = 0 . (3.24)

14 Rp is the yield strength. Here, we did not specify the plastic strain used to define
the yield strength. In metals, Rp0.2 is the most common choice (see section 3.2).

15 If the principal stresses are sorted by their size, a Roman subscript is used; if they
are unsorted, the subscript uses Arabic numbers, see section 2.2.1.
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(a) Elastic (b) Plastic

Fig. 3.17. Yield surface for a state of plane stress. If the stress state reaches the
yield surface, yielding occurs

The function f(σ1, σ2, σ3) can be interpreted geometrically if we use a coor-
dinate system with three axes σ1, σ2 and σ3. These axes describe points in
the space of principal stresses (or stress space, for short), not in spatial space.
The function f states for each point in the space of principal stresses and
thus for each possible stress state whether the material yields or not. Usually,
f < 0 holds for points close to the origin (for small stresses), and the mate-
rial deforms elastically. For points far away from the origin, f > 0 holds in
most cases.16 The boundary between the two cases, described by f = 0, forms
a surface in the stress space, called the yield surface. For this reason, f is
sometimes called the yield function. Within the yield surface, the material is
elastic; if the stress state reaches the yield surface, the material yields.

The yield surface can be interpreted geometrically in the form f(σij)

as well. However, the stress space is six-dimensional in this case and
f(σij) = 0 becomes a five-dimensional hypersurface.

If we reduce the number of variable principal stresses to two, for example, by
considering a plane stress state, the yield surface becomes a line. As in the
general case, yielding occurs if the stress state reaches this line as sketched in
figure 3.17. Figure 3.18 illustrates how the yield surface can be constructed
from f(σ1, σ2).

It is impossible to create a stress state that is outside of the yield surface;
only the cases f < 0 and f = 0 can occur in reality. This can be explained
using the example of a perfectly plastic material with a stress-strain diagram
as in figure 3.19(a). It is easy to see that it is not possible to increase the stress
beyond Rp. But what happens in a material that hardens? In such materials,
stresses larger than Rp are indeed possible (see figure 3.19(b)). This, however,
does not imply that the stress state leaves the yield surface. Instead, the yield
16 We will see later that this can, in fact, not happen.
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Fig. 3.18. Sketch of the yield function f for two varying principal stresses σ1 and
σ2. The curve with f(σ1, σ2) = 0 is the yield surface for the material and has an
elliptical shape. It corresponds to the von Mises yield criterion (cf. figure 3.23(b)),
introduced later. For three principal stresses, f is a hypersurface in four-dimensional
space which cannot be shown graphically

"

¾

Rp

(a) Perfectly plastic

"

¾

Rp

(b) Strain hardening

Fig. 3.19. Stress-strain curves for different hardening behaviours

surface itself changes during loading to ensure that the stress state always
remains on it. This will be explained in more detail in section 3.3.5.

The precise form of the yield criteria depends on the material considered.
We will start by discussing the most commonly used criteria for metals and
afterwards we will discuss modifications pertaining to polymers.

3.3.2 Yield criteria of metals

The plastic deformation of metals is based on so-called slip processes within
the grains that shift crystal planes relative to each other.17 The material shears
plastically. Slip can occur simultaneously on different planes, thus allowing for
arbitrary plastic deformations. The crucial point is that plastic deformations
are caused by shear processes and, therefore, by shear stresses.
17 This section uses some concepts that will be explained in detail later in sec-

tion 6.2.4, but can be read without reading that section first.
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Fig. 3.20. Illustration of deviatoric stresses in
the space of principal stresses

As already mentioned in section 3.2.2, a metal does not change its volume
during plastic deformation, it is incompressible.18 This is plausible, for plastic
deformation corresponds to a rearrangement of atoms without changes in the
interatomic distance (see section 6.2.3).

Experimentally, it has been found that hydrostatic stresses, characterised
mathematically by σ1 = σ2 = σ3, do not cause plastic deformations. There-
fore, it can be assumed that the deviation of the stress state from a state
of hydrostatic stress determines whether the material yields. In the space of
principal stresses, the yield surface thus is a surface (cylindrical or prismatic,
for example) that encloses the hydrostatic space diagonal σ1 = σ2 = σ3. If we
change the position on the hydrostatic axis (the space diagonal), the surface
enclosing the axis changes neither its shape nor its size. Mathematically, this
can be represented by subtracting the hydrostatic part of the stress19

σhyd =
1
3
σii =

1
3
(σ11 + σ22 + σ33) (3.25)

of the diagonal elements of the stress tensor. The result is the so-called devia-
toric stress tensor σ′11 σ′12 σ′13

σ′21 σ′22 σ′23
σ′31 σ′32 σ′33

 =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

−

 σhyd 0 0
0 σhyd 0
0 0 σhyd


or, written in index notation,20

σ′ij = σij − δijσhyd . (3.26)

This is illustrated in figure 3.20. The yield criterion is now defined using the
deviatoric stress tensor.
18 Poisson’s ratio for purely plastic deformation is ν(pl) = 0.5.
19 The hydrostatic stress σhyd corresponds to the negative pressure: −p = σhyd.

20 δij is the Kronecker delta, δij =

(
1 for i = j,
0 else

.
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In isotropic materials, the yield surface must not depend on the orientation
of the load. Thus, the function f describing the yield surface can only contain
those parts of the deviatoric stress tensor that do not change during coordinate
transformations. This is already ensured if the principal stresses are used
because the hydrostatic stress σhyd is also coordinate invariant.

There are several ways to define yield criteria according to these rules. The
two most important ones are discussed now.

The Tresca yield criterion

The Tresca yield criterion or maximum shear stress criterion is not directly
based on the considerations of the previous sections, but it fulfils them nev-
ertheless. It states that the maximum shear stress in the material point de-
termines yielding. This maximum shear stress can be determined graphically
using Mohr’s circle, see figure 2.3 on page 34. The maximum principal stress
is denoted as σI, the intermediate value as σII, and the smallest as σIII. The
maximum shear stress is

τmax =
σI − σIII

2
.

The intermediate principal stress σII is not considered.
If τmax reaches a critical value τF, the material yields. Thus, the yield

criterion is
σI − σIII

2
− τF = 0 . (3.27)

The value of τF can be determined by a tensile test which is characterised by
the stress state σI = Rp and σII = σIII = 0. The result is

τF =
Rp

2
.

Equation (3.27) can thus be recast in the form

σI − σIII = Rp . (3.28)

The term σI − σIII is the equivalent stress σeq,T. The yield strength can be
plotted in Mohr’s circle as shown in figure 3.21. As soon as the circle touches
this limit, the material yields.

If we plot the yield criterion in the space of principal stresses, as ex-
plained at the beginning of section 3.3.1, and consider a state of plane stress
(σ3 = 0), the yield surface (or rather, yield line) is hexagonal as sketched
in figure 3.22(a). Again, Roman subscripts denote the principal stresses when
sorted (σI ≥ σII ≥ σIII), Arabic subscripts are used if they are unsorted. There
are six parts of the yield surface:

In section 1○, both σ1 and σ2 are positive, and the equations σI = σ1,
σII = σ2, and σIII = 0 hold. From the yield criterion Rp = σI − σIII, we find
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(a) The material does not yield
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(b) Yielding occurs

Fig. 3.21. Yield strength in Mohr’s circle. If the maximal shear stress τmax, deter-
mined by the principal stresses σI and σIII, is smaller than the shear yield strength
τF, no yielding occurs (a). If, in contrast, τmax reaches the shear yield strength, the
material yields (b)

σ1
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(a) Yield surface for σ3 = 0. The vari-
ous sections are explained in the text

(b) Yield surface for arbitrary stress
states in the space of principal stresses

Fig. 3.22. Yield surface for the Tresca yield criterion

σ1 = Rp. In section 2○, the principal stresses are σI = σ2, σII = σ1, and
σIII = 0, resulting in σ2 = Rp. In section 3○, the signs differ: σ2 > 0 and
σ1 < 0. Thus, the principal stresses are now σI = σ2, σII = 0, and σIII = σ1.
Using the yield criterion, we find Rp = σ2 − σ1, which is a linear equation
σ2 = σ1 + Rp. The other sections 4○, 5○, and 6○ are similar.

If we consider a general stress state in three dimensions, the result is a
hexagonal tube centred on the space diagonal σ1 = σ2 = σ3. The correspond-
ing yield surface is shown in figure 3.22(b).

Since the Tresca yield criterion can be easily evaluated using Mohr’s circle,
it is often used in heuristic explanations. Using it in the calculation of plastic
deformations, for example, with the method of finite elements, is problematic,
though, as we will see on page 96.
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(a) Yield surface for arbitrary stress
states in the space of principal stresses
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(b) Yield surface for σ3 = 0. For com-
parison, the Tresca yield surface is
plotted as dashed line

Fig. 3.23. Yield surface for the von Mises yield criterion

The von Mises yield criterion

The yield surface for the von Mises yield criterion (occasionally called distor-
tional strain energy criterion) is cylindrical in the space of principal stresses,
with its centre coinciding with the hydrostatic axis σ1 = σ2 = σ3 and a radius
(see figure 3.23(a)).

R =
√

2 kF .

kF is the critical stress for the yield criterion which can be stated as follows,
using principal stresses:21√

1
6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
= kF . (3.29)

If we are not using principal stresses, the off-diagonal terms of the stress tensor
(shear stresses) have to be considered, resulting in√

1
6

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2

]
+ σ2

23 + σ2
13 + σ2

12 = kF .

(3.30)

Apart from the principal stresses, a stress tensor has another set
of invariants, called the principal invariants J1, J2, and J3 (see ap-
pendix A.7). They are defined as

21 In equations (3.29) and (3.30), we use the components of the stress tensor itself,
not of the deviatoric stress tensor. This does not matter because only differences
of the diagonal elements occur, for which σ′ii−σ′jj = (σii−σhyd)− (σjj −σhyd) =
σii − σjj holds.



www.manaraa.com

3.3 Plasticity theory 91

J1 = σii ,

J2 =
σijσji − σiiσjj

2
,

J3 = det(σij) .

According to equation (3.25), the hydrostatic stress is σhyd = J1/3. This
yields the invariance of the hydrostatic stress with respect to coordinate
transformations, which was already used above.

The von Mises yield criterion uses the principal invariants of the
deviatoric stress tensor, J ′1, J ′2, and J ′3. Using equation (3.26), we find

J ′1 = 0 ,

J ′2 =
1

2

`
σ′ijσ

′
ji

´
(3.31)

=
1

6

h
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ11 − σ33)

2
i

+ σ2
23 + σ2

13 + σ2
12,

J ′3 = det(σ′ij) .

If we define the yield surface with these invariants, any yield criterion
fulfils f(J ′2, J

′
3) = 0.

The von Mises yield criterion, equation (3.29), results if we assume
that the yield criterion depends only on the second invariant J ′2 from
equation (3.31):

f(J ′2) =
1

2
σ′ijσ

′
ji − k2

F = 0 . (3.32)

J ′2 measures the distance from the hydrostatic axis in the principal
stress space.

Using equation (3.29) for a uniaxial tensile test, we find, analogous to the
derivation of equation (3.28),

kF =
Rp√

3
.

The yield criterion can thus be rewritten as√
1
2

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]
= Rp (3.33)

or√
1
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2

]
+ 3

(
σ2

23 + σ2
13 + σ2

12

)
= Rp .

(3.34)

The left-hand side in equations (3.33) and (3.34) is called the equivalent
stress σeq,M. Figure 3.23(b) shows the von Mises yield criterion for a state
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Fig. 3.24. Yield criteria for polymers

of plane stress compared to the Tresca yield criterion for the case that the
yield strength was determined in a tensile test. The difference amounts to
15.5% at most.

The two yield criteria can also be normalised to agree for a shear experi-
ment with σ2 = −σ1. In this case, the von Mises ellipse is completely enclosed
by the Tresca hexagon and touches it at the six linear sections.

It is not possible to prove the validity of these yield criteria theoretically.
This is obvious if we remember that they are continuum-mechanical approxi-
mations of a discontinuous reality. Experiments confirm that both – especially
the von Mises yield criterion – satisfactorily describe the observed material
behaviour.

3.3.3 Yield criteria of polymers

In contrast to metals, the yield strength of polymers is different in compression
and tension. Frequently, the yield strength in uniaxial compression is 20% to
30% larger than in uniaxial tension (see also section 8.4). To account for
this, the von Mises yield criterion is augmented by terms that depend on the
hydrostatic stress state. We will discuss two possible approaches.

The parabolically modified yield criterion assumes that the yield surface
is a paraboloid centred on the hydrostatic axis (figure 3.24(a)). Its radius
depends on the hydrostatic stress σhyd according to

R(σhyd) =

√
2m

3
R2

p − 2(m− 1)σhyd Rp , (3.35)

where m quantifies the difference between the material behaviour in compres-
sion and tension:

m =
Rc

Rp
. (3.36)
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The yield strengths in compression and tension are denoted Rc and Rp.22 If
a negative number results in the square root, the radius is taken to be zero;
the material yields.

If we insert the radius of the yield surface, R(σhyd), into equation (3.29)
we find the parabolically modified von Mises criterion [45]

σeq,pM =
m− 1
2m

(
σ1 + σ2 + σ3

)
(3.37)

+

√[
m− 1
2m

(
σ1+σ2+σ3

)]2

+
1

2m

[
(σ1−σ2)2 + (σ1−σ3)2 + (σ2−σ3)2

]
.

The yield criterion σeq,pM = Rp is used for compressive and tensile loads.23
A different approach is to assume that the yield surface is a cone (see

figure 3.24(b)) with radius

R(σhyd) =

√
2
3

1
m + 1

[
2mRp − 3(m− 1)σhyd

]
. (3.38)

The conically modified von Mises criterion, written with principal stresses, is

σeq,cM =
1

2m

[
(m− 1)

(
σ1 + σ2 + σ3

)
+ (m + 1)

√
1
2

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]] (3.39)

where m is taken from equation (3.36), and the yield criterion is σeq,cM = Rp

(after [45]). Again, a negative value in the square root means that the radius
is zero and the material yields.

In figure 3.25, the different yield criteria are compared for a plane stress
state. The modified yield criteria lead to a compressive yield strength that
surpasses the tensile yield strength.

3.3.4 Flow rules

As we saw in the previous sections, yield criteria can be used to assert for
any stress state whether a material yields. How the material deforms plas-
tically is not governed by a yield criterion. The plastic deformation itself is
described using flow rules. We will discuss them rather briefly here, a more
22 The compressive strength Rc is taken as positive although it corresponds to a

compressive stress.
23 If we assume, for example, a compressive test with σ1 = −Rc, σ2 = σ3 = 0 and

use the definition of m, we find – after some algebra – σeq,pM = Rp. Here, it has
to be kept in mind that the square root in equation (3.37) is always positive. In
the case σ < 0, we use

√
σ2 = |σ| = −σ.
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Fig. 3.25. Comparison of the yield criteria for polymers with the original von Mises
yield criterion. The curves are given for identical Rp values
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Fig. 3.26. Illustration of the fact that there is no unique relation between strains
and stresses for plastic deformations, shown for the example of a perfectly plastic
material. After different loading histories, different strains (ε1 and ε2, respectively)
can occur at the same stress σ1. Likewise, the same strain ε2 can occur for different
stresses (σ1 and σ2, respectively), depending on the loading history

detailed discussion can be found in books on continuum mechanics e. g., Ji-
rasek /Bazant [80], Hill [65], Becker /Bürger [16], or Kaliszky [81].

As soon as plastic deformations have occurred, the relation between stress
and strain is not unique. In a tensile test, for example, where the material is
loaded until it yields and then unloaded again, two possible strains correspond
to a given stress value (see figure 3.26). The strain in the material (for example,
ε1 and ε2 at σ1 in figure 3.26) depends on whether the material has been
stressed with values larger than the current stress σ or not. Similarly, two
different stresses (σ1 or σ2 in the figure) may cause the same strain (ε2).
Thus, the relation between stress and strain is not unique; the current state
of the material depends on the deformation history.

However, the stress σ needed to increase the strain by a plastic strain
increment dε(pl) can be stated,24 for the yield criterion has to be fulfilled. We

24 Here, we use ε instead of a quantity to characterise large deformations, like G.
The reason for this is that the strain increments dε are always small. Thus, there
is no error in using dε as long it is always calculated for the current state of
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can thus write down the strain increment as

dε(pl) = dε(pl)(σ) .

The differential changes are frequently divided by the time increment dt in
which they are applied. This leads to the rate equation

ε̇(pl) = ε̇(pl)(σ) ,

where ε̇(pl) is the plastic strain rate.25 The established procedure to perform
the calculations is to prescribe (plastic) strain increments and calculate the
required stresses, for this ensures stability of the calculations and uniqueness
of the results. In a perfectly plastic material, for example, the stress can be
assigned unambiguously to the strain increment (see figure 3.26), but the re-
verse is not true. In the tensile test described in section 3.2, we also prescribed
the strains and measured the stresses for stability reasons.

A commonly used flow rule in its rate formulation is

ε̇
(pl)
ij = λ̇σ′ij . (3.40)

The proportionality constant λ̇ adjusts itself at any given strain rate ε̇
(pl)
ij

to ensure that the deviatoric stress tensor σ′ij cannot leave the yield surface
during plastic deformation.

To derive equation (3.40), it is assumed that the power dissipated dur-
ing plastic deformation, ẇ(pl) i. e., the plastic energy dissipation per
time, is maximal. There is no theoretical proof of this assumption,
which is called Drucker’s postulate, but it can be justified by arguments
from thermodynamics and is also in agreement with experiments.

Mathematically, Drucker’s postulate can be written as

ẇ(pl) = σij ε̇
(pl)
ij = σ ·· ε̇(pl) = max .

If we take the constant volume during plastic deformation into account,
we can also write

ẇ(pl) = σ′ij ε̇
(pl)
ij = σ′ ·· ε̇(pl) = max . (3.41)

If we consider an arbitrary yield surface f(σij) = 0 and prescribe a
plastic strain rate (in the Voigt notation) ε̇(pl), equation (3.41) holds
if the projection of σ′ onto ε̇(pl) becomes maximal. This is sketched in
figure 3.27. To achieve a maximum power of plastic energy dissipation

the material. If the total deformation is to be calculated from the increments, an
appropriate strain measure like G has to be used. This may be difficult, for the
contribution of rigid-body rotations has to be taken into account, which may be
problematic [67,71].

25 This formulation does not imply that the material properties are time- or rate-
dependent.
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Fig. 3.27. Illustration of Drucker’s postulate. For a specified plastic strain rate
ε̇(pl), the dissipated power ẇ(pl) = σ′ ·· ε̇(pl) is maximal when the projection of
σ′ onto ε̇(pl) is maximal. This is the case for σ′2. In contrast, σ′1 would result in a
lower ẇ(pl), for instance. For the stress with the maximal dissipated power σ′2, the
following condition holds true: The gradient of the yield function grad f , which is
perpendicular to the yield surface, is parallel to the plastic strain rate ε̇(pl)

for a given ε̇(pl), the deviatoric stress tensor of the external stress must
be σ′2. If it is σ′1, the power is smaller according to equation (3.41). If the
yield surface is continuously differentiable, the position of maximum
power is characterised by the gradient of the yield surface grad f =

∂f/∂σ′ij , which is perpendicular to the surface, being parallel to ε̇
(pl)
ij .

This yields the flow rule

ε̇
(pl)
ij = λ̇

∂f

∂σ′ij
. (3.42)

Here, λ̇ is a proportionality factor.
Furthermore, the relation between stresses and plastic strain rates

must be unique. From this, it can be seen that the yield surface must
be strictly convex26 and continuously differentiable to allow the for-
mulation of a flow rule. The Tresca yield criterion is not continuously
differentiable (there is no unique normal vector at its corners), and on
the surfaces, different stress states fulfil equation (3.42) for a given ε̇

(pl)
ij .

Therefore, a flow rule cannot be derived using this criterion.
For the von Mises yield criterion, the yield surface is given by equa-

tion (3.32),

f(σ′kl) =
1

2
σ′klσ

′
lk − k2

F ,

26 A (simply) convex surface may contain plane sections with a constant normal
vector. If there are no plane sections and the surface is curved everywhere (without
turning points), it is strictly convex.
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resulting in

∂f

∂σ′ij
=

1

2

„
∂σ′kl

∂σ′ij
σ′lk + σ′kl

∂σ′lk
∂σ′ij

«
.

The partial derivatives can be evaluated as

∂σ′kl

∂σ′ij
=

(
1 for k = i, l = j

0 otherwise

)
= δkiδlj .

Thus, the equation simplifies to

∂f

∂σ′ij
=

1

2

`
σ′ji + σ′ij

´
= σ′ij .

Inserting this into equation (3.42), we find the flow rule (3.40) for the
von Mises yield criterion.

The consistency of this equation can be checked by verifying that plastic
deformations do not change the volume. This is rather simple. Since λ̇ is a
scalar quantity and since the trace of the deviatoric stress tensor, σ′ii, vanishes,
we find tr ε̇ = ε̇ii = 0. The change in volume over time is thus zero.

As already stated, flow rules are a tool to determine the stresses from a
given strain rate. They do not allow to calculate how the yield surface changes
by hardening (see section 3.3.1). This task is performed by hardening laws, to
be discussed now.

3.3.5 Hardening

If we take another look at the stress-strain curve of a tensile test, we find that
the stress increases after yielding begins (at a stress of Rp), seemingly mov-
ing beyond the yield surface that is determined by the yield strength. This,
however, was explicitly ruled out in section 3.3.1. The apparent contradic-
tion can be resolved by realising that the yield surface changes during plastic
deformation.

That the yield surface must change during plastic deformation and that
the stress state cannot move outside of it can also be seen by the fact that
the material becomes elastic immediately upon unloading. Thus, the stress
state must be inside the yield surface as soon as the load reduces. This is
illustrated in figure 3.28. The yield surface is constant until the stress reaches
the yield strength (figure 3.28(a)). During the subsequent plastic deformation
and hardening, the yield surface grows together with the current flow stress
(figures 3.28(b) and 3.28(c)). Upon unloading, the material becomes elastic,
and the slope of the stress-strain curve is equal to Young’s modulus. The yield
surface remains unchanged (figure 3.28(d)).
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Fig. 3.28. Illustration of strain hardening using a stress-strain curve. Here, we
assume isotropic hardening which is explained in the text

The yield surface can change its shape, size, and position in stress space.
Mathematically, this can be realised by modifying the yield criterion (3.23)
with additional terms that describe the change of the yield surface (the mod-
ified yield surface is denoted as g) [115]:

g(σij , ε
(pl)
ij , kl) = 0 . (3.43)

Here, ε
(pl)
ij is the current plastic deformation, and kl is a set of hardening

parameters which may depend on the deformation history, the strain rate,
or the temperature. As in the original yield criterion, the material deforms
elastically if the stress state lies with the surface g = 0 i. e., if g < 0 holds.

To take hardening into account, we need to find a quantity that can de-
scribe the deformation history of the material. This quantity has to increase
during plastic deformation, regardless of the deformation orientation, for, in
general, any plastic deformation causes hardening. A frequently used quantity
is the so-called equivalent plastic strain ε

(pl)
eq . To define this strain, we need

the equivalent plastic strain rate ε̇
(pl)
eq which is defined analogously to the von
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Mises yield criterion:27

ε̇(pl)
eq =

√
2
9

[(
ε̇
(pl)
1 − ε̇

(pl)
2

)2 +
(
ε̇
(pl)
1 − ε̇

(pl)
3

)2 +
(
ε̇
(pl)
2 − ε̇

(pl)
3

)2
]

(3.44)

Since the equivalent plastic strain rate defined this way is positive for all plastic
strain rates, the equivalent plastic strain increases for any plastic deformation,
regardless of the deformation orientation.

The equivalent plastic strain ε
(pl)
eq is calculated from the equivalent plastic

strain rate ε̇
(pl)
eq by integrating:

ε(pl)
eq =

∫
ε̇(pl)
eq dt . (3.45)

For a uniaxial and monotonous deformation, ε
(pl)
eq = ε(pl) holds.

The hardening parameters kl in equation (3.43) depend on the equivalent
plastic strain:

g
(
σij , ε

(pl)
ij = 0, kl(ε(pl)

eq )
)

= f(σij) .

In the following, we will consider three important cases: the case of no hard-
ening, and the two extreme cases of hardening behaviour, isotropic hardening
and kinematic hardening. The hardening of most materials contains isotropic
and kinematic parts.

No hardening

A perfectly plastic material does not harden so that its yield surface, equa-
tion (3.23), remains unchanged during deformation. Thus, the yield criterion
is

g(σij) = f(σij) = 0 . (3.46)

The corresponding stress-strain diagram is given in figure 3.29(a).
In reality, there are no perfectly plastic materials. In a tensile test, they

would start to neck immediately upon yielding because the stability criterion
from section 3.2.3 would be violated (in a perfectly plastic material, we find
σ = Rpϕ0 and thus ϕneck = 0). Nevertheless, perfectly plastic material models
are frequently used, especially in metal working, for they are simple and allow
to solve many problems analytically, using the so-called slip-line theory [65].
If elastic deformations are allowed in the material, it is called elastic-perfectly
plastic (figure 3.29(a)). Since the elastic part of the deformation is small when
plastic deformations are large, the elastic part can be neglected, leading to
the assumption of a rigid-perfectly plastic material (figure 3.29(b)).
27 This is a reasonable definition for it ensures that the trace of the plastic strains

vanishes: tr ε(pl) = 0.
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Fig. 3.29. Stress-strain curves of perfectly plastic materials
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Fig. 3.30. Isotropic hardening

Isotropic hardening

During isotropic hardening, the yield surface grows symmetrically around the
origin as sketched in figure 3.30(a). Mathematically, this implies that the
argument ε

(pl)
ij in equation (3.43) plays no role, and the yield criterion is thus

g
(
σ1, σ2, σ3, kl(ε(pl)

eq )
)

= 0 . (3.47)

If yielding of the material is governed by the von Mises yield criterion, we
find the yield criterion for isotropic hardening, using the changing flow stress
σF(ε(pl)

eq ),√
1
2

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]
= σF(ε(pl)

eq ) (3.48)

with initial condition

σF(ε(pl)
eq = 0) = Rp . (3.49)
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Fig. 3.31. Shift of the yield surface caused by kinematic hardening. It is not pos-
sible to draw this in the space of principal stresses because the material becomes
anisotropic during hardening so that its properties depend on the spatial direction

So far, we have not specified how the yield surface changes with increasing
plastic deformation. This is done by evolution equations for the hardening
parameters, so-called hardening laws.

A simple isotropic hardening law can be written down for the case of linear
hardening, defined by the flow stress increasing linearly with the plastic strain.
Its rate formulation is [65].

σ̇F = H · ε̇(pl)
eq (3.50)

with the hardening parameter H. When hardening begins, the flow stress σF

is equal to the yield strength Rp. The initial condition is thus (3.49). The rate
equation for linear hardening can be integrated to yield

σF = Rp + H · ε(pl)
eq .

The stress-strain diagram of a material with isotropic hardening that is
deformed by uniaxial tension first and uniaxial compression afterwards can be
found in figure 3.30(b). In compression, the material yields at a stress −σF1,
given by the absolute value of the maximum stress in tension, σF1.

Kinematic hardening

In a material with kinematic hardening, the yield surface changes neither its
shape nor its size, but moves in stress space (see figure 3.31). Mathematically,
this can be realised by subtracting a kinematic backstress (σ(kin)

ij ) from the
stress tensor in the yield criterion:

g
(
σij − σ

(kin)
ij

)
= 0 . (3.51)

Geometrically, (σ(kin)
ij ) is the shift of the yield surface from the origin, see

figure 3.31.
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Fig. 3.32. Stress-strain diagram with reversed stress for a kinematically hardening
material

Since the yield surface shifts in stress space, the material becomes aniso-
tropic because the value of the flow stress depends on the space direction.
Thus, the yield criterion cannot be formulated using principal stresses. The
kinematic backstress depends on the deformation history. However, because
it is anisotropic, it cannot depend on the equivalent plastic stress ε

(pl)
eq , only,

but depends also on other variables e. g., the plastic strain (ε(pl)
ij ).

Due to the anisotropy, the von Mises yield criterion must be used in its
coordinate-dependent formulation:(

1
2

[(
σ

(eff)
11 − σ

(eff)
22

)2

+
(
σ

(eff)
22 − σ

(eff)
33

)2

+
(
σ

(eff)
11 − σ

(eff)
33

)2]
+3

(
σ

(eff)
23

)2 + 3
(
σ

(eff)
13

)2 + 3
(
σ

(eff)
12

)2
)1/2

= Rp

(3.52)

with σ
(eff)
ij = σij − σ

(kin)
ij for all i, j = 1, 2, 3.

A simple evolution law for the backstress is [80]

σ̇(kin) = C · ε̇(pl)
eq ·

σ − σ(kin)

σ0
. (3.53)

Here, C is a hardening parameter and σ0 a constant reference stress which
is equal to the yield strength at σ(kin) = 0. When plastic deformation starts,
σ(kin) = 0 holds.

If we deform a kinematically hardening material in uniaxial tension and
compression, its behaviour differs drastically from the isotropically hardening
material discussed above (figure 3.32). Upon load reversal, the material yields
at a stress σF2 = σF1 − 2Rp because the size of the yield surface remains
unchanged. In the extreme case, this may lead to plastic deformation while
the stress is still tensile (figure 3.32(b)).

A special case of pure kinematic hardening is the so-called Masing be-
haviour. If a stress-strain diagram is measured for a material with this be-
haviour, the material behaviour upon load reversal can be described by rotat-
ing the original stress-strain diagram by 180°, scaling both axes to twice their
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length, and positioning the origin of the rotated and scaled diagram at the
end of the original stress-strain curve. One prerequisite for the validity of this
construction is that the slope of the stress-strain curve after yielding must be
the same for both loading directions.

Frequently, the term Bauschinger effect is used if the flow stress becomes
smaller upon load reversal, like in kinematic hardening.

∗ 3.3.6 Application of a yield criterion, flow rule, and hardening rule

In this section, we will discuss the relation between elastic deformations, a
yield criterion, a flow rule, and hardening, using the example of a simple
material.

Consider a tensile specimen of an isotropic metal with elastic parameters
E = 210 000MPa and ν = 0.3, and a yield strength σF = 210 MPa. The
material hardens linearly and isotropically according to equation (3.50), with
hardening parameter H = 10 000MPa. The tensile specimen is elongated,
starting with an unloaded state, at a constant strain rate of ε̇11 = 0.001 s−1.
We want to determine the time-dependence of stresses and strains.

We start by collecting all equations required. Next, we simplify the equa-
tions and calculate the solution variables.

As the metal is not rigid, each deformation has an elastic part which follows
Hooke’s law (2.31):

ε(el) = S∼4
·· σ . (3.54)

For plastic deformations, it is useful to use a rate formulation (see sec-
tion 3.3.4). Equation(3.40)

ε̇(pl) = λ̇ · σ′ (3.55)

holds if the yield criterion is fulfilled.
Each strain increment has an elastic and a plastic part:

dε = dε(el) + dε(pl) .

This is also true if we relate the increments to time:

ε̇ = ε̇(el) + ε̇(pl) . (3.56)

Since the compliance tensor S∼4
is time-independent, equation (3.54) can be

easily differentiated with respect to time, yielding

ε̇(el) = S∼4
·· σ̇ . (3.57)

This equation can be used together with equation (3.56).
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So far, we still lack a criterion to define whether the material yields. This
is provided by the von Mises yield criterion

σeq < σF ⇒ no yielding,
σeq = σF ⇒ yielding

(3.58)

with the equivalent stress

σeq =

√
1
2

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]
. (3.59)

Hardening is taken into account by equation (3.50).
We now have found all equations necessary to perform the calculations.

In summary, we have to solve the following system of differential equations
(using the same equation numbers as above):

ε̇ = ε̇(el) + ε̇(pl) , (3.56)

ε̇(el) = S∼4
·· σ̇ , (3.57)

σeq =

√
1
2

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]
, (3.59)

ε̇(pl) =

{
0 for σeq < σF

λ̇ · σ′ for σeq = σF

, (3.55), (3.58)

ε̇(pl)
eq =

√
2
9

[(
ε̇
(pl)
1 −ε̇

(pl)
2

)2 +
(
ε̇
(pl)
1 −ε̇

(pl)
3

)2 +
(
ε̇
(pl)
2 −ε̇

(pl)
3

)2
]
. (3.44)

σ̇F = H · ε̇(pl)
eq (3.50)

During deformation, the following quantities change: ε, σ (and thus also σ′,
σeq), ε(el), ε(pl), λ̇ and σF. The parameters S∼4

and H remain constant.
In a tensile test of an isotropic material, we can assume that the stress

state is uniaxial. The stress tensor is thus

σ =

σ11 0 0
0 0 0
0 0 0

 .

As expected, the equivalent stress is thus simply

σeq = σ11 .

Hooke’s law in its rate formulation becomes

ε̇(el) =

1/E 0 0
0 −ν/E 0
0 0 −ν/E

 σ̇11 . (3.60)
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The plastic strain rate can be calculated, using the deviatoric stress tensor
σ′ = σ − 1σhyd,

ε̇(pl) =

2/3 0 0
0 −1/3 0
0 0 −1/3

 ·

{
0 for σ11 < σF

σ11λ̇ for σ11 = σF

. (3.61)

The equivalent plastic strain rate for the case σ11 = σF is thus

ε̇(pl)
eq =

√
4
9
σ2

11λ̇
2 =

2
3

∣∣∣σ11λ̇
∣∣∣ .

The evolution of the flow stress can be calculated since we know that no load
reversal occurs:

σ̇F = H ·

{
0 for σ11 < σF

2
3σ11λ̇ for σ11 = σF

.

Neither the elastic nor the plastic parts of the strain contain shear terms.
The 22- and 33-components can be calculated easily, using the equations (3.60)
and (3.61). They will not be considered anymore. Thus, we find the following
equations:

ε̇11 = ε̇
(el)
11 + ε̇

(pl)
11 , (3.62)

ε̇
(el)
11 =

1
E

σ̇11 , (3.63)

ε̇
(pl)
11 =

{
0 for σ11 < σF,
2
3σ11λ̇ for σ11 = σF,

(3.64)

σ̇F = H ·

{
0 for σ11 < σF,
2
3σ11λ̇ for σ11 = σF.

(3.65)

These equations, (3.62) to (3.65), are all that is required to solve the exercise.

∗ Elastic region

The initial conditions are σ11 = 0 and ε
(pl)
11 = 0. During deformation, the total

strain rate ε̇11 = 0.001 s−1 is prescribed. Since the yield criterion is not fulfilled
for small stresses, we find ε̇11 = ε̇

(el)
11 = 0.001 s−1. Using equation (3.63), the

stress rate can be calculated as σ̇11 = Eε̇11 = 210MPa/s. The stress at time
t is thus

σ11 =
∫ t

0

σ̇11dt̃ = σ̇11 t = 210 MPa/s · t . (3.66)
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∗ Elastic-plastic region

Yielding starts at a time tp given by the yield criterion

σ11(tp) = σF(ε(pl)
eq = 0) = Rp ,

210 MPa/s · tp = 210 MPa . (3.67)

Thus, we find tp = 1 s. Starting at this moment, the plasticity terms in the
equations have to be taken into account. Since the yield criterion is now ful-
filled, we can replace σ11 by σF.

If we now add the elastic part, equation (3.63), and the plastic part, equa-
tion (3.64), to get the total strain rate, equation (3.62), we find

ε̇11 =
1
E

σ̇F +
2
3
σFλ̇ .

Replacing λ̇ by equation (3.65) yields

σ̇F =
EH

E + H
ε̇11 .

Using the parameter values provided, we find for t ≥ 1 s an increase in flow
stress of σ̇F = 9.546 MPa/s. Using the initial value σF(t = 1 s) = 210MPa, we
find the flow stress

σF = 210MPa + 9.546 MPa/s · (t− 1 s) . (3.68)

This directly yields the elastic strains

ε
(el)
11 =

σF

E
= 0.001 + 4.546× 10−5 s−1 · (t− 1 s) . (3.69)

The plastic strain is the difference between total and elastic strain:

ε
(pl)
11 = 9.546× 10−4 s−1 · (t− 1 s) . (3.70)

To summarise all results, we find the following stresses and strains:

σ11 =

{
210 MPa/s · t for t < 0 s ,

210 MPa + 9.546 MPa/s · (t− 1 s) for t ≥ 0 s ,

ε11 = 0.001 s−1 · t ,

ε
(el)
11 =

{
0.001 s−1 · t for t < 0 s ,

0.001 + 4.546× 10−5 s−1 · (t− 1 s) for t ≥ 0 s ,

ε
(pl)
11 =

{
0 for t < 0 s ,

9.546× 10−4 s−1 · (t− 1 s) for t ≥ 0 s ,
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Fig. 3.33. Illustration of various stress and strain measures during a tensile test

Figure 3.33 shows plots of the results.
As can be seen in the figure, the plastic strain ε(pl) increases markedly

stronger than the elastic strain ε(el) after yielding. The slope of the stress-
strain curve is 9546 MPa. It is slightly smaller than the hardening parameter H.
This is due to the elastic strains which slightly increase with the stress.

∗ 3.4 Hardness

Hardness is defined as the resistance of a material to indentation.28 Since
this resistance strongly depends on the shape of the indenter and the force
level, there are a large number of different testing methods. These different
methods can be classified in three groups, scratch tests, indentation tests, and
rebound tests. In general, it is not possible to calculate a hardness value given a
value measured with another method – however, conversion tables for common
materials are available.
28 In different branches of engineering, the term ‘hardness’ is used with slightly dif-

ferent meaning. In tribology, for example, hardness denotes the resistance to wear,
in machining, it is used as a measure of machinability. The definition provided
here is used in mechanical testing.
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Although hardness is not a material parameter that can be easily under-
stood theoretically, hardness tests are of great importance, for they are simple
and may even be employed on built-in components. A further advantage is
that small test volumes can be investigated, even down to single grains (mi-
crohardness testing).

∗ 3.4.1 Scratch tests

Historically, scratch tests are of some importance, for they were the first hard-
ness tests employed. In a scratch test, it is tested whether a material can
be scratched using a needle made of another material. Either relative scales
that allow to sort materials by their scratchability are used, or the size of
the scratch is measured to determine the hardness. Although the method can
yield quantitative results, it is not easy to perform precise measurements.

∗ 3.4.2 Indentation tests

Indentation tests are the most common hardness tests, for they are rather
easy to perform. A hard indenter with a certain geometry is pressed into the
test specimen, and the surface of the indentation or the indentation depth are
measured and related to the force required.

One example is the Brinell hardness test. In this test, a hardened steel
ball with diameter D is pressed into the test surface with a prescribed force,
avoiding sudden impact.29 After unloading, the diameter d of the remaining
indentation is measured. The Brinell hardness is defined as the testing force,
measured in kp, divided by the total area of the indentation, measured in
mm2:

HB =
F/kp

A/mm2
=

0.102F/N
A/mm2

. (3.71)

The surface A is measured from the diameter, using the formula

A =
π

2
D(D −

√
D2 − d2) . (3.72)

The unit of the hardness is that of a pressure. Since the total surface of the
indentation was used, the hardness does not correspond to the average pres-
sure between indenter and material. This can be corrected by using only the
projected area of the indentation. If such a definition is used, the hardness is
almost independent of the testing force, provided the material does not harden
and the testing force was sufficient to cause significant plastic deformation. If
29 There are different standards for the size and diameter of the ball. Commonly

used values are D = 10mm and a force of 29.43 kN = 3000 kp. The choice of
parameters depends on the tested material and the thickness of the specimen. If
large testing forces are needed, cemented carbide balls can also be used.
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Fig. 3.34. Finite element simulation of the hydrostatic stress in a Brinell hardness
measurement using an elastic-plastic material law. The ball is assumed to be rigid
and no stresses have been calculated for it. Between ball and tested material, a coef-
ficient of friction of µ = 0.3 has been used. The resulting volume of the indentation
is 8% larger than the bulge

the material hardens, the measured hardness increases with the testing force
if this definition is used, whereas it decreases at large forces when the Brinell
definition is employed.

One disadvantage in theoretically analysing this method is that the geome-
try of the indentation changes during the test. If the indenter has a pyramidal
shape, the shape of the indentation remains unchanged, only its size grows.
Such an indenter is used in the Vickers hardness test. Again, the hardness is
defined as quotient of testing force and total area. In both methods, the stress
state beneath the indenter is triaxial, with a large hydrostatic pressure in the
material. This is advantageous because it reduces the danger of crack forma-
tion in brittle materials. Figure 3.34(a) illustrates the process for a spherical
indenter. To understand the indentation process mechanically, a simple model
can be used where the material is assumed to be rigid-perfectly plastic. In this
case, a relation between the size of the indentation and the yield strength of
the material can be derived. The material displaced by the indenter moves
and causes a bulge, with a volume that is the same as that of the displaced
material because of the constant volume. In reality, the volume of the bulge
is usually smaller than that of the indentation, showing that the assumption
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of a rigid material is incorrect. Figure 3.34(b) illustrates this using a finite
element simulation with a spherical indenter. As can be seen, the volume of
the indentation is larger than that of the bulge. A more detailed study shows
that a plastic zone forms beneath the indenter that elastically compresses the
material beneath it, causing residual stresses.

This consideration already shows that hardness is a complex material prop-
erty because the elastic and plastic properties of the material play a role. In
materials that are not linear-elastic and can deform with large elastic defor-
mations, there is no simple relation between hardness and the yield strength.
This is illustrated by rubber, which cannot be indented permanently, resulting
in an infinite hardness.

Similar to these indentation methods are impact hardness testing methods
(for example, the Poldi hardness tester), where the indentation caused by
the impact of a hammer on the material is measured. In contrast to other
indentation methods, a short-time load is thus applied, causing an increase in
the strain rate.

A detailed description of the different methods is given by Dowling [43].

∗ 3.4.3 Rebound tests

In rebound tests, a hammer is used that drops down onto the material, and
the rebound height is measured. In a purely elastic impact, the total kinetic
energy of the material is transformed to deformation energy and then again
to kinetic energy so that the hammer rebounds to its original height. If plastic
deformation occurs, energy is dissipated and the rebound height is reduced by
the corresponding amount. The advantages of this method are the small size
of the indentation and the short testing time. Hardness value obtained with
this method can also not be converted directly to other hardness values.

3.5 Material failure

Plastic deformation during service is often considered as a failure criterion.
One reason for this is that the deformations are usually intolerably large,
another is that the yield strength is usually not small enough compared to
the tensile strength so that the safety of the component is not guaranteed. A
component, however, may also fail by fracture instead of plastic deformation.
There are a large number of possibilities how this fracture can occur which will
be discussed only partially in the following. A detailed survey can be found in
Lange [90]. Fracture of polymers will be discussed in chapter 8; here, we will
briefly discuss the failure of metals and ceramics.

Fractures and cracks can be classified in three groups, depending on
whether their main cause is mechanical, thermal, or corrosive.

Mechanical fracture can be due to monotonic increase of the load (overload
fracture or forced fracture) or due to cyclic loads (fatigue fracture). Overload
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Fig. 3.35. Formation of cavities at particles due to
large plastic deformation [90]. The particles (e. g.,
precipitates) either detach from the matrix (shown
as circles) or fracture (shown as squares)

fracture will be discussed in this section; fatigue fracture is the subject of
chapter 10. The most important group of thermally caused fractures is the
creep fracture discussed in chapter 11. One example of corrosive fracture will
be discussed in section 3.5.3, see also section 5.2.6.

An overload fracture is characterised by a mainly monotonously increas-
ing load that is applied moderately fast or abruptly [90]. These conditions
discriminate overload fracture from fatigue fracture (non-monotonous, cyclic
load) and creep fracture (long loading times at high temperature).

The fracture can occur as shear fracture, cleavage fracture, or a mixture
of both. The two characteristic forms will be discussed in the following.

3.5.1 Shear fracture

Shear fracture30 (microscopically ductile fracture) occurs by plastic deforma-
tion with slip in the direction of planes of maximum shear stress (see sec-
tions 3.3.2 and 6.2.5). Therefore, it occurs only in ductile materials. In most
cases, shear fracture is associated with large macroscopic deformations, as, for
example, in a tensile test. However, if this is prevented by the component ge-
ometry, the component may fail macroscopically brittle, but still with a shear
fracture. This may happen if there are notches or cracks in the material (see
chapters 4 and 5).

In very pure metals, large deformations are possible. In a tensile test, the
specimen can therefore be drawn to a thin tip (see figure 3.15(a)). Most engi-
neering metals, however, contain particles (e. g., precipitates, see section 6.4.4).
During large plastic deformation at high stresses, the particles may fracture
or detach from the surrounding matrix, depending on the strength of the par-
ticle and the interface (figure 3.35). Particle fracture occurs preferentially in
brittle particles and at high tensile stresses (for example, in a triaxial stress
30 Sometimes, the term ‘shear fracture’ is used for a fracture caused by applying a

shear load to a specimen, regardless of the fracture mechanism.
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Fig. 3.36. Dimples of a ductile overload failure in a ferritic steel [90]. In some
dimples, inclusions can be seen clearly in this scanning electron microscope micro-
graph. This is, however, not always the case; sometimes, the inclusions fall out of
the dimples or cannot be observed although they still are inside the dimple

state). Detachment of the particle from the matrix mainly occurs when the
deformation in the matrix is large.

Particle failure induces microcracks in the material. They deform to form
ellipsoidal cavities. In between the particles, the matrix is only single-phase
and thus has an increased ductility. The cavities thus grow by slipping of the
matrix (see sections 6.2.3 and 6.2.5) on planes of maximum shear stress (e. g.,
in a uniaxial stress state at 45° to the loading direction). The matrix between
the cavities is drawn to thin tips or ridges.31 The finally formed fracture
surface is characterised by a large number of dimples formed in this way. The
size of the dimples is in the range of a few micrometres. Sometimes, this kind
of fracture is called fibrous fracture.

In most cases, shear fracture is transcrystalline (through the grains), but,
depending on the material state, intercrystalline fracture (fracture along the
grain boundaries) may also occur.

In section 3.2.2, we already discussed the failure of a tensile specimen by
shear-face fracture or cup-and-cone fracture. This will be elaborated on here.
Since the stress level and the plastic deformation are largest in the specimen’s
centre in the necking region (see figures 3.13 and 3.14), damage by formation
and coalescence of cavities starts there. Accordingly, the first cracks also form
in this region. They grow along planes of maximum shear stress, at 45° to
the loading direction in a tensile test because slip and, thus, damage are
concentrated along these planes. During this process, the crack grows slightly
beyond the region of the minimum cross section, where the stresses are largest.
31 This is comparable to the drawing of a thin tip in the tensile test of a pure metal.
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Fig. 3.37. Formation of a crack in a tensile test specimen. The crack initiates at the
centre of the specimen and propagates towards the surfaces. Inside the specimen, the
crack runs at an angle of 45° only for short distances and switches the orientation
to remain in the cross section with the highest stress

How the crack propagates further depends on several parameters, like the
hardening behaviour of the material and the strain rate.

Since the radial stress σr and the circumferential stress σc (figure 3.13)
have the same magnitude, the stress is the same in all direction perpen-
dicular to the loading direction and is equal to them. Thus, all planes
at 45° to the loading direction have the same maximum shear stress,
and slip can occur on any of them. Within the specimen, there is thus
no preferential slip direction, and several different slip planes may be
found locally.

If the material softens, for example, at large plastic deformations parallel to
the crack, it may be easier to follow the direction of a crack into the less highly
stressed region. In this case, the crack extends through the whole specimen
at an angle of 45° to the loading direction and a shear-face fracture forms
(figure 3.15(b)). Lange [90] discusses the conditions for a shear-face fracture
in some detail.

In most cases, it is easier for the crack not to depart too far out of the
region of smallest cross section. On the one hand, this is due to the smaller
stress level in the thicker parts of the specimen. On the other hand, the dam-
age in these regions is less because less inclusions have failed there (due to
the smaller stress and plastic deformation). The crack changes its direction
and propagates at 45° to the loading direction back to the smallest cross sec-
tion with its larger stresses and damage. The crack thus zigzags through the
interior of the specimen as shown in figure 3.37. As soon as the crack reaches
the outer part of the specimen, the stress state becomes two-dimensional.32
The maximum principal stress is oriented in the loading direction and the
32 In the region of the crack, the specimen is a ring, only. On the outer and inner

surface of this ring, there can be no radial stresses, thus the radial stresses within
the ring must be small.
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Fig. 3.38. Dependence of the interatomic distance r on the external force F

minimum principal stress in radial direction. The largest shear stress can be
found on a cone at 45° to the loading direction. Slip and crack propagation
thus occur preferentially on these planes. Since the material cross section is
small, slip can occur over larger distances than before without causing a ge-
ometrical incompatibility. Furthermore, the specimen is less damaged in its
surface region due to the smaller plastic deformation there. For these reasons,
the direction of crack propagation is not determined as strongly by cracks in
the material as it was before. The crack thus grows at 45° on conical surfaces
without changing its propagation direction. Thus, the characteristic cup and
cone fracture surface forms on the two halves of the specimen.

Since slip and failure occur simultaneously on the whole circumference of
the specimen and since both possible conical surfaces are equivalent, both
directions are usually found in a specimen, leading to partial cups and cones
on both halves of the specimen.

3.5.2 Cleavage fracture

A cleavage fracture (microscopically brittle fracture) occurs (almost) without
microscopic deformation perpendicular to the largest tensile stress. Bonds
between the atoms break. In face-centred cubic metals, the ductility is so
large that cleavage fracture can occur in extreme cases only. In body-centred
cubic metals, cleavage fracture can occur at low temperature or high strain
rates; in ceramics, cleavage fracture is the standard case.

The binding force, shown in figure 2.6 on page 38, provides a simple model
for the cracking of atomic bonds. If we plot the external instead of the internal
force for a certain atomic distance r, figure 3.38 results. If the external tensile
force F exceeds the maximum, the atoms separate and the bond breaks. The
breaking of the bond is due to a tensile force so that bond breaking is caused
by the largest tensile stress in the material, the maximum principal stress σI.

The component or specimen cross section does not fail simultaneously
everywhere. Instead, a crack forms locally by bond breaking. On the one
hand, this is due to local stress concentrations in the component, which may
be caused by the component geometry, its microstructure, or by previous
plastic deformations. This is discussed in detail in Lange [90]. On the other
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Fig. 3.39. Scanning electron microscope
micrograph of a cleavage fracture surface
in a journal of a shaft made of 42CrMo 4

hand, the material may contain microstructurally weak points which may
ease crack formation, for example a grain with its cleavage plane (see below)
perpendicular to the maximum principal stress. Since the microstructure (e. g.,
the grain orientation) or the stress level change in the vicinity of the initialised
crack, the crack cannot propagate initially. It thus remains stationary [90] and
propagates (stably) only upon load increase. At a certain critical crack length
or stress level, the crack propagates unstably through the specimen. The stress
and crack length required for unstable crack propagation (in the ductile or
brittle case) are calculated by fracture mechanics, the topic of chapter 5.

Similar to shear fracture, cleavage fracture is usually transcrystalline, but
may sometimes also be intercrystalline. As already mentioned, a transcrys-
talline cleavage fracture propagates along certain crystallographic planes, the
cleavage planes (e. g., the {100} planes in body-centred cubic metals). Cleav-
age fracture surfaces are microscopically smooth, but they may contain steps,
for example because of a transition of the crack to a neighbouring grain with
slightly different orientation or because of cutting through a screw dislocation
(a one-dimensional lattice defect, see sections 6.2 and 6.3.5). The appearance
of a cleavage fracture surface may vary [90], one example is shown in figure 3.39.

When grain boundaries are embrittled (for example, by precipitates, see
section 6.4.4), cleavage fracture may be intercrystalline. In this case, the grain
structure can be clearly seen in a scanning electron microscope picture (see
figure 1.10(b)).

As already discussed, the maximum principal stress σI determines whether
cleavage fracture occurs. If it reaches the cleavage strength σC (sometimes also
called cohesive strength), the initially crack-free material fails by cleavage
fracture. This stress σC is thus sufficient to initiate a crack in a crack-free
material and to propagate it. Figure 3.40 illustrates the cleavage strength
using Mohr’s circle. It is a vertical, straight line at σ = σC.
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Fig. 3.40. Illustration of the Tresca yield strength and cleavage strength in Mohr’s
circle

3.5.3 Fracture criteria

Depending on whether the stress state reaches the yield strength or the cleav-
age strength first, the material will yield or fail by cleavage fracture as sketched
in figure 3.40. Cleavage fracture occurs when the cleavage strength is reached
first:

σeq(σI, σII, σIII) < Rp , (3.73a)
σI = σC , (3.73b)

where σeq is an equivalent stress, for example the Tresca or von Mises equiv-
alent stress. If we use the Tresca yield criterion, equation (3.73a) yields
τmax < τF (figure 3.40(a)).

Since the flow stress increases due to hardening, failure by cleavage frac-
ture may occur even after plastic yielding. In this case, a (macroscopi-
cally) ductile (but microscopically brittle) cleavage fracture develops, a
rather seldom case that can occur only in a multiaxial stress state [90].

Cleavage fracture is favoured by the following conditions:

• Loading of the material in a triaxial stress state that keeps Mohr’s circle
small and shifts it to the right in the direction of the cleavage strength.
Such a stress state can be found in the notched bar impact bending
test [42]. In components, changes in cross section and notches cause such
a stress state (see chapter 4).

• Loading of the material at high strain rates, for example in the notched bar
impact bending test, or at low temperature. This is due to the fact that the
yield strength always depends on these two parameters (see section 6.3.2),
whereas the cleavage strength is almost constant. This is particularly the
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case in polymers and body-centred cubic metals. In polymers, the yield
strength strongly increases with decreasing temperature if the tempera-
ture is near the glass temperature (see chapter 8); in body-centred cubic
metals, this happens near the so-called ductile-brittle transition temper-
ature (see section 6.3.3). The increase in the yield strength increases the
danger of reaching the cleavage strength before the yield strength.

• Increasing the yield strength of metals e. g., by alloying, heat treatments
(like hardening), or cold working (see section 6.4). This implies that high-
strength materials have a larger tendency to fail by cleavage fracture than
low-strength materials.

• Reduction of the cleavage strength σC by weakening of the interatomic
bonds. This may happen, for example, when hydrogen or sulfur is dissolved
in steel (see below).

The material behaviour is ductile if the yield strength is reached first
(figure 3.40(b)):

σeq(σI, σII, σIII) = Rp , (3.74a)
σI < σC . (3.74b)

This can be achieved by keeping at least one stress component in the compres-
sive region, thus shifting Mohr’s circle to the left of the diagram. This method
is used in metal forming like forging or rolling.

In many cases, the cleavage strength σC cannot be measured experimen-
tally. For example, body-centred cubic metals only fail by cleavage fracture
even at temperatures below the ductile-brittle-transition temperature if the
stress state is triaxial. For this reason, it is impossible to measure σC in a ten-
sile test. Ceramics usually fail because a microcrack, already present in the
material, propagates and causes failure at a stress below σC (see section 7.3).
The tensile strength Rm of a ceramic is thus smaller than its cleavage strength.
nn

∗ Hydrogen embrittlement

One important cause for the embrittlement of high-strength metals, especially
ferritic steels, is hydrogen dissolved in the material. The hydrogen atoms are
situated in the gaps between the atoms in the crystal lattice (interstitially,
see figure 6.37 on page 204) and weaken the interatomic bonds, thus reducing
the cleavage strength. Hydrogen can enter the material in electrochemical
reactions in aqueous solutions, for example during corrosion or galvanisation
(e. g., electrogalvanising of sheets).

One prerequisite for the accumulation of hydrogen in the material is
that it is present in its atomic state because it cannot diffuse into the
material otherwise. The electrochemical reaction in aqueous solutions
mentioned above is one example:
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H3O
+ + e− −→ H2O + H .

Welding in humid atmosphere can, due to the dissociation of water molecules,
also allow hydrogen to diffuse into the material. The tensile residual stresses
produced by the welding process widen the crystal lattice and thus attract
hydrogen atoms which then reduce the cleavage strength. This may cause crack
propagation by residual stresses alone, without any external stress. Since the
diffusion to the most highly stressed regions needs some time, fracture may
occur hours or days after the welding process [90]. Therefore, this is often
called desktop effect (the material fails while lying around somewhere) or
delayed fracture. This effect is especially important in high-strength materials,
for example in steels, because the residual stresses in these materials can be
large without being relieved by plastic deformation.

Dissolved hydrogen can also cause so-called stress corrosion cracking. This
will be discussed in section 5.2.6.
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Notches

Notches are abrupt changes in the geometry of a component. They may be
necessary for design reasons, for example in a seat of a rolling bearing, a
feather key slot, a drill-hole, or a screw thread for a connection. Notches may
also be caused during manufacturing or service. Examples are cavities in cast-
ing, tool marks in machining, or wear marks in service. Notches cause local
stress concentrations and thus may induce premature failure if not correctly
accounted for during component design. In this chapter, we will discuss the-
ories that allow to estimate how notches affect the stresses and thus provide
tools for safe design of notched components.

4.1 Stress concentration factor

The stress distribution in a component can be visualised using so-called stress
trajectories. These trajectories always run in the direction of the maximum
principal stress. Their distance is inversely proportional to the stress so that
the stress trajectory density is a measure of the locally acting stress. Each
abrupt change in cross section deflects the stress trajectories which then move
closer together. Thus, a local stress concentration arises.

The term stress trajectory is due to the fact that the stress distribution
in a component is analogous to the velocity distribution of a laminar,
frictionless fluid. The stress concentration at changes in the geometry
corresponds to the disturbed flow of the fluid at similar geometries.
Different from fluid flows, stress trajectories cannot become turbulent.

Figure 4.1 shows sketches of the stress trajectories near differently shaped
notches. If we look at the stress trajectories at a cross section at the notch
root, we see that they are not evenly distributed, but become more narrow at
the notch root. Thus, there is a local stress concentration, with a maximum
stress σmax in the notch root as shown in figure 4.2. The shape and size of the
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(b) Abrupt change of diameter
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Fig. 4.1. Stress trajectories in notched components. The stress trajectories are
aligned with the maximum principal stress, their density is a measure of the stress
level. At the notch root, there is a stress concentration in both geometries
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F Fig. 4.2. Axial stress distribution in a notched
cross section under tensile load

notch determines how strong the stress concentration is. This is quantified by
the stress concentration factor Kt that is defined for linear-elastic material
behaviour as

Kt =
σmax

σnss
, (4.1)

with σmax being the maximum stress in the notch root and σnss being the net-
section stress, defined as the force divided by the reduced cross-sectional area
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at the notch position. The net-section stress is thus larger than the nominal
stress σn away from the notch.

In the centre of the specimen at the position of the notch, the stress is
smaller than the net-section stress σnss. The reason for this is that the total
force transferred through the cross section does not change and that the stress
at the notch root is larger than σnss.

In the context of notches, the stress concentration is always related to
the net-section stress σnss.1 If the stress concentration at the notch root has
to be compared to the nominal stress far away from the notch (σn or, more
precisely, σn∞, infinitely far away from the notch), the increase in stress due
to the reduced cross section and the stress concentration at the notch root
have to be multiplied.

To design notched components, knowledge of Kt is required. Therefore,
empirical formulae have been determined that can be used to calculate Kt

for different geometries and load cases. They are collected in tables e. g., ‘Pe-
terson’s Stress Concentration Factors’ [109] or ‘Dubbel’ [18]. One example, a
shaft with a circumferential notch under tensile load, is shown in figure 4.3.
The dimensions in the figure are the outer diameter D, the diameter at the
notch root d, the notch depth t (with 2t = D − d), and the notch radius %.

As an example, consider a shaft with D = 100 mm and a notch with radius
% = 5 mm and depth t = 5 mm (a semi-circular notch). The diameter at the
notch position is thus d = D−2t = 90 mm. Using d/D = 0.9 and %/t = 1.0, we
can read off the stress concentration factor from the diagram (see figure 4.3):
Kt ≈ 2.7. The exact value is Kt = 2.734.

Imagine the shaft to be loaded in tension with a force of 1200 kN. Far
away from the notch, the stress is thus 152.8 MPa. Due to the smaller cross
section at the notch position, the net-section stress is σnss = 188.6 MPa. If
the material is linear elastic, as we assumed so far in this section, and use
Kt ≈ 2.7, the maximum stress is σmax = Kt σnss = 516 MPa.

If the available materials to construct the shaft are a ceramic with Rm =
400 MPa or the aluminium alloy AlSi 1MgMn with Rp0.2 = 202 MPa and
Rm = 237MPa, we can expect the ceramic to fail because the stress at the
notch root is much larger than the tensile strength. For the aluminium alloy,
the tensile strength is also exceeded, and we thus might expect its failure as
well. However, the calculation is not valid in the case of a ductile material,
for equation (4.1) is valid only for a linear-elastic material, whereas the alloy
AlSi 1MgMn yields at Rp0.2 = 202MPa. This increases the strain at the notch
root and reduces the stress concentration. The actual stress at the notch root
cannot be calculated with the tools introduced so far. In the next section, we
will discuss Neuber’s rule that allows to estimate the stresses.
1 This is different from fracture mechanics (chapter 5) where the nominal stress is

always calculated by using the total cross section (σn).
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Fig. 4.3. Diagram of the stress concentration factor Kt of a shaft with a circum-
ferential notch under tensile loading (after [18]). From the lines in the diagram, the
line with the appropriate ratio %/t has to be selected. Next, the intersection with
the vertical line at the correct ratio d/D is determined. The value of Kt can be read
off at the ordinate. The cross marks the example point discussed in the text

4.2 Neuber’s rule

In the previous section, we defined the stress concentration factor Kt (equa-
tion (4.1)) for linear-elastic materials. As the example at the end of the previ-
ous section shows, it cannot be used directly for the case of ductile materials,
for yielding at the notch root reduces the stresses. In this section, we dis-
cuss how the influence of a notch can be taken into account even in ductile
materials.

Because the stress concentration factor is calculated using stresses, it is
now denoted as Kt,σ, resulting in

Kt,σ =
σmax

σnss
. (4.2)

A similar formula can be used for the strains:

Kt,ε =
εmax

εnss
, (4.3)

with εnss being the strain at a stress σnss. The maximal strain in the notched
cross section is εmax. In a linear-elastic material, Hooke’s law ensures Kt,σ =
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Fig. 4.4. Axial stress and strain in the notched cross section for two different materi-
als: Linear-elastic (dashed line) and elastic-plastic (solid line). The figure shows the
nominal stresses and strains (σnss, εnss) and the maximum values in the linear-elastic
(σmax,el, εmax,el) and elastic-plastic case (σmax, εmax)

Kt,ε. If σmax exceeds the yield strength of the material,2 the material yields at
the notch root and Hooke’s law is no longer valid. As shown in figure 4.4, this
increases εmax compared to the linear-elastic case. The maximum stress σmax,
on the other hand, is reduced due to local unloading. Therefore, Kt,σ < Kt,ε

holds. The numerical values of Kt,σ and Kt,ε are still unknown, though.

Strictly speaking, equivalent stresses (for example, the von Mises equiv-
alent stress) should be used to calculate stresses and strains due to the
multiaxial stress state. Furthermore, the equation Kt,σ = Kt,ε is only
approximately valid in the elastic region because of the transversal
contraction caused by the radial and circumferential stresses. For engi-
neering purposes, a uniaxial calculation is sufficient, especially so if we
consider the scatter in the material parameters. The multiaxiality of
the stress state at the notch root is discussed in section 4.3.

Neuber [106] suggested that the geometric mean of Kt,ε and Kt,σ remains
unchanged even if the material yields:

Kt,ε ·Kt,σ = K2
t . (4.4)

Figure 4.5 shows a qualitative plot of Kt,ε and Kt,σ with increasing load. Until
the material yields, both quantities are equal; after yielding, Kt,ε increases and
Kt,σ decreases. If we insert equations (4.2) and (4.3) into equation (4.4), we
find
2 Here we assume that σnss is smaller than the yield strength.
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Fig. 4.5. Qualitative dependence of the stress concentration factors on the load. εp

is the strain at yielding (stress Rp) in the notch root

εmax

εnss
· σmax

σnss
= K2

t .

If we assume that the net-section stress σnss is smaller than the yield strength,
we can use Hooke’s law εnss = σnss/E to derive Neuber’s rule

εmax · σmax =
σ2

nss

E
K2

t . (4.5)

According to Neuber, this equation holds in the notch root for a given load
and geometry.

Neuber’s rule can be derived as an approximation. In the case of a
parabolic notch and under the assumption of a certain simple stress-
strain curve, a formula can be derived that simplifies to Neuber’s rule
in the case of a very sharp notch. For large notch radii, Neuber’s
rule is a conservative approximation i. e., it overestimates stresses and
strains [106]. This conservative property of the rule is valid for most
other notch geometries as well [59].

If we approximate the stress state at the notch root as uniaxial,3 the material
state must lie on the stress-strain curve measured in tensile tests. This pro-
vides another relation between σmax and εmax, which are therefore uniquely
determined. Graphically, equation (4.5) corresponds to a hyperbola in the σ-ε
space of the stress-strain diagram, since the right side is constant for a given
load case. The stresses and strains at the notch root can be found as the in-
tersection of the hyperbola and the stress-strain curve as shown in figure 4.6.

3 In reality, the stress state is biaxial at the notch root (the radial stress at the
surface is zero), so that there is no difference to the uniaxial case if the Tresca
yield criterion is used. If the von Mises yield criterion is used, there is a slight
difference which is neglected here.
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Fig. 4.6. Determination of σmax and εmax using the Neuber’s rule. The specified
numbers refer to the example in the text (AlSi 1MgMn)

We now resume the example from page 121, using the stress-strain curve
of AlSi 1MgMn from figure 4.6. Taking the value of σnss = 188.6 MPa and
Young’s modulus of E = 66 200 MPa, we find from equation (4.5)

σmax × εmax =
(188.6 MPa)2

66 200MPa
× 2.7342 ≈ 4.016 MPa ,

the Neuber’s hyperbola shown in the figure. Reading off the intersection of
the two curves yields σmax = 214 MPa and εmax = 1.88 × 10−2. Since σmax

is significantly smaller then the tensile strength Rm = 237 MPa and since
the plastic strain of about 1.88 × 10−2 is small compared to the fracture
strain (A = 0.17), the material can bear the load. Thus, the metal that is
weaker without a notch can bear larger loads than the ceramic in the notched
component.

These considerations show that the component does not fracture although
it yields at the notch root. However, plastic deformation is confined to a small
volume. The global deformation is thus small so that limited plastic flow in
the notch root is also acceptable from this point of view.

To summarise, it can be stated that in notched components the strongest
material is not always the best choice since weaker materials have a larger
ductility. This is even more important under cyclic loads, a fact to be discussed
in chapter 10.

∗ 4.3 Tensile testing of notched specimens

In this section, we discuss the influence of a notch on a tensile test specimen.
We compare an un-notched and a notched tensile specimen as shown in fig-
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Fig. 4.8. Stress-strain curve of an un-notched and a notched tensile specimen. The
left part is a detailed view at small strains

ure 4.7, made of the aluminium alloy AlSi 1MgMn. The specimen dimensions
are as follows: The diameter d = 8 mm of the un-notched specimen is the
same as that of the notched specimen at the notch position, d. The outer
diameter of the notched specimen is D = 1.5d = 12mm, the notch radius is
% = 0.25d = 2mm. Thus, the notch depth is t = %. From diagram 4.3, we can
read off a stress concentration factor of Kt = 1.70. The original gauge length
is L0 = 5d = 40mm.

Figure 4.8 shows the stress-strain diagrams measured for the specimens.
In the diagram, the nominal strain ε = ∆L/L0 according to figure 4.7 and
the nominal stress σ = F/(πd2/4) are plotted. It has to be noted that the



www.manaraa.com

4.3 Tensile testing of notched specimens 127

¾l

¾c

¾a

F

F

Fig. 4.9. Stress distribution in a purely elastic stress state

diameter at the narrowest cross section is used in both specimens. Therefore,
the numbers in the diagram are not the true stresses and strains in the notched
specimen. Nevertheless, they can be used to determine a relative stiffness and
strength.

We now discuss the differences between the two stress-strain curves:
It is apparent that the elastic stiffness of the notched specimen is larger

than that of the un-notched one. The reason for this is that the cross section
of the un-notched specimen is constant throughout the specimen: Ssmooth =
πd2/4. In the notched specimen, the largest part of the gauge length has the
larger cross-sectional area of Snotched = πD2/4 = 2.25Ssmooth and thus a
higher specimen stiffness.

Significant yielding occurs at a larger nominal stress in the notched than
in the un-notched specimen. To understand this, we need to take a closer
look at the stress distribution. In the un-notched specimen, the stress state
is uniaxial, and the specimen starts to yield when the longitudinal stress is
σl = Rp. In the notched specimen, the stress state at the notch position is more
complicated. The longitudinal stress σl is distributed according to figure 4.2.
Furthermore, there are stresses in radial and circumferential direction (σr

and σc). Figure 4.9 shows the three stress components for a purely elastic
deformation without yielding at the notch root. The longitudinal stress σl

is maximal at the notch root. The radial stress σr, however, has to be zero
since no stress can be transmitted at the specimen surface. The stress state
is thus biaxial. This only slightly impedes yielding which therefore still starts
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(a) At the notch root. Mohr’s circle is
large and thus causes early yielding

¾
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(b) In the centre of the specimen. Due to
the triaxial stress state, Mohr’s circle is
small, and yielding is severely hampered

Fig. 4.10. Mohr’s circle of the notched (solid line) and un-notched (dashed line)
tensile specimen for purely elastic behaviour at the same external load

at σl ≈ Rp.4 Because of the stress concentration at the notch root, yielding
begins here at an early stage as we saw in section 4.2 (see figure 4.10(a)).
The interior of the specimen is in a state of triaxial tensile stress. Therefore, a
higher external load is required to make the material yield (see figure 4.10(b)).

The maximum external force during the test is larger in the notched than
in the un-notched case. This is again due to the triaxial stress state and can
be explained in the same way as for the onset of yielding above. It has to be
kept in mind that the diameter of the un-notched specimen is the same as
that of the notched specimen at the notch position. Thus, it should not be
assumed that a specimen can be made stronger by notching it.

The nominal strain at fracture is much larger in the un-notched specimen
than in the notched one. This is due to the large gauge length used for mea-
suring the strains. In the un-notched specimen, plastic deformation occurs
throughout the entire gauge length (until necking starts), and the measured
strain is the same as the strain within the material. In the notched specimen,
yielding occurs locally within the notched cross section. Large plastic defor-
mations occur in this region, whereas the rest of the specimen remains elastic
and its strains are only small. If the strain was measured locally, the difference
would be smaller, as we already saw in section 3.2.2.

4 If we use the Tresca yield criterion, yielding occurs exactly at σl = Rp. With
the von Mises yield criterion, the result is

p
1/2 · [(σl − σc)2 + σ2

l + σ2
c ] = Rp.

Depending on the value of the circumferential stress, the axial stress at which
yielding starts may be up to 15.5% larger than with the Tresca criterion (see
section 3.3.1).
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Fracture mechanics

5.1 Introduction to fracture mechanics

Frequently, components contain cracks, microcracks, or crack-like defects. Pos-
sible causes are machining flaws, manufacturing defects (e. g., casting pores
in metals or sintering pores in ceramics), or crack formation during service
(e. g., by cyclic loads – see chapter 10 – or corrosive attack).1 Some exam-
ples are shown in figure 5.1. Particles, for example precipitates, can initiate
cracks as well: On the one hand, they often possess an unfavourable geometry
(e. g., being plate-like or sharp-edged), on the other hand, they can fail eas-
ily by detaching from the matrix or by breaking. In all these cases, it is not
sufficient to design components against the yield strength because failure by
crack propagation can occur at much smaller loads. Fracture mechanics deals
with such problems. Its main objective is to predict at what loads cracks may
grow, in order to enable a safe design. Cracks can be considered as extremely
(or even infinitely) sharp notches. As the theoretically calculated stress field
at the crack tip becomes infinite in this case, the methods used for assessing
notches are not applicable. The tools of fracture mechanics are capable to deal
with these infinities.

In this chapter, we assume a monotonically increasing or static load. The
application of fracture mechanics to the case of cyclic loads is the topic of
section 10.6.1.

5.1.1 Definitions

As already stated, fracture mechanics deals with the growth of cracks, also
called crack propagation, crack growth, or crack extension. A non-propagating
crack is called stationary and does not cause component failure.
1 Pores are not cracks, but are rather notch-like. However, their radius of curvature

is frequently small enough to justify their treatment as cracks.
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(a) Welding line in pressure die cast alu-
minium. Courtesy of Institut für Füge-
und Schweißtechnik, Technische Univer-
sität Braunschweig, Germany

(b) Corrosion attack on a rongeur for-
ceps made of a martensitic stainless steel

(c) Slag inclusion in a forged casing (d) Crack in a connection rod

Fig. 5.1. Examples of initial cracks and other damage phenomena that might initi-
ate cracks

Fracture mechanics is based on continuum mechanics and is therefore only
applicable when all relevant length scales are large compared to the length
scale of the microstructure (for example, the grain size).

Three characteristic load cases are distinguished in fracture mechanics,
which differ in the orientation of the stress field to the crack. They are called
mode I to III. In mode I, the largest principal stress σI is oriented perpendic-
ularly to the crack surface as shown in figure 5.2(a). Tensile stresses open the
crack and thus separate the surfaces. Compressive stresses close the crack so
that forces can be transmitted almost identically to a case without a crack. In
modes II and III, the crack surfaces are loaded in shear (see figures 5.2(b) and
5.2(c)). These modes do not open the crack. When the load is applied, the
crack surfaces slide with friction and thus dissipate part of the external work.
Mixed-mode loads can also occur. As we will see later, crack propagation is
determined by an energy balance. Because the energy dissipated in modes II
or III is not available for crack propagation, a crack propagates at smaller
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(a) Mode I (b) Mode II (c) Mode III

Fig. 5.2. Load cases in fracture mechanics

loads in mode I. Independent of its initial orientation, a growing crack thus
changes its orientation to be perpendicular to the maximum principal stress
i. e., to be loaded in mode I, if stress field and material are homogeneous. This
load case is therefore the most important one and will be the only one consid-
ered in the following. The maximum principal stress σI therefore determines
the material behaviour in crack propagation.

When the crack propagates, the crack surface can be formed by either
shear or cleavage fracture, or a mixture of both, leading to fracture surfaces
as discussed in section 3.5. If fracture occurs by crack propagation at stresses
below the yield strength, the global plastic deformation of the component is
usually small because plastic deformation is localised at the crack tip.

5.2 Linear-elastic fracture mechanics

As the name suggests, linear-elastic material behaviour is the precondition
to allow applying the theory of linear-elastic fracture mechanics (lefm), dis-
cussed in this section. Strictly speaking, this precondition is fulfilled only in
brittle materials like ceramics. In good approximation, it can also be used in
ductile materials if the region of plastic deformation is restricted to the vicin-
ity of the crack tip. Therefore, it can in many cases also be used to analyse
metals.

We start by considering the stress field near the crack tip and the energy
release during crack propagation. Next, we will discuss how to design com-
ponents against failure by crack propagation and how to determine relevant
material parameters.

5.2.1 The stress field near a crack tip

A crack can be considered as an infinitely sharp notch. If we estimate the
maximal stress by setting the notch radius to zero, the stress concentration
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Fig. 5.3. Infinite plate containing an internal crack that is opened by a load

factor Kt and thus the stress at the crack tip becomes infinite.2 Therefore, the
stress field is singular near the crack tip.3 Because the stress field in the vicinity
of the crack tip is similar, independently on the geometry, one geometry is
investigated first; the stress distributions for other geometries can be derived
from it. We consider an infinitely extended plate of thickness t containing an
internal crack of length 2a. The plate is loaded on all sides with a stress σ,
see figure 5.3. We assume that the stress field can be described as plane
stress4 and that the material is linear elastic, homogeneous, and isotropic.
This configuration is called a Griffith crack and is loaded in mode I because
there are no shear stresses in the crack plane. The stress state within the plate
can then be calculated analytically. If terms that are small near the crack tip
are neglected, the following near-field approximation can be calculated for the
stress field [75,147]:

σ̃11(r, ϕ) =
KI√
2πr

cos
ϕ

2

[
1− sin

ϕ

2
sin

3ϕ

2

]
,

σ̃22(r, ϕ) =
KI√
2πr

cos
ϕ

2

[
1 + sin

ϕ

2
sin

3ϕ

2

]
,

τ̃12(r, ϕ) =
KI√
2πr

cos
ϕ

2
sin

ϕ

2
cos

3ϕ

2
.

(5.1)

r and ϕ are the coordinates of a polar coordinate system centred at the crack
tip (figure 5.4), and the tilde on the stress marks it as an approximation. The
2 For very small notch radii, the calculation of the stress concentration factor Kt is

problematic and the methods of fracture mechanics are more precise. Nevertheless,
the fact that there is a singularity at the crack tip is reflected correctly by Kt.

3 This does not mean that the force on each atomic bond becomes infinite as well,
see exercise 13.

4 This assumption is correct if the thickness is small compared to all other dimen-
sions i. e., t � a.
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Fig. 5.4. Coordinate system near the crack tip
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On the x̃1 axis, σ̃11 and σ̃22 are identical

Fig. 5.5. σ22 stress field near the crack tip. The crack of length 2a = 10mm lies
along the negative x̃1 axis and ends in the centre of the coordinate system shown in
figure 5.4. The material is loaded with a stress of σ = 100MPa

stress intensity factor KI (sif) is defined using the external stress σ:

KI = σ
√

πaY . (5.2)

The index ‘I’ denotes the mode I load case. Y is a geometry factor that takes
different geometries into account and is 1 for the case considered here. It will
be discussed in greater detail below (see page 139). All other terms in the
equations depend only on the spatial position so that only the stress intensity
factor determines the stress level near the crack tip. The stress functions are
singular because the distance from the crack tip r enters the denominator.
Figures 5.5(a) and 5.5(b) show examples of the stress fields. The physical
unit of the stress intensity factor K is MPa

√
m according to equation (5.1)

because the stress near the crack tip is proportional to the quotient of the
stress intensity factor and the square root of the distance to the crack tip

√
r:

σ ∝ K/
√

r.
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Fig. 5.6. Elliptical crack opening

The stress field at the crack causes an ellipsoidal opening of the crack due
to Hooke’s law (figure 5.6). Using a coordinate system centred in the middle
of the crack as shown in figure 5.6, the displacement v0 of the crack surfaces
is given by

v0(x1) =
2σ

E

√
a2 − x2

1 . (5.3)

The ellipsoidally opened crack has the semiaxes a and 2σa/E.
As we have neglected small terms in the derivation of equations (5.1), they

are valid only near the crack tip. This can immediately be seen by the fact
that the stresses in equations (5.1) approach zero for large r, whereas the true
far-field stress is σ. Directly at the crack tip, the equations are also not valid
because they are based on continuum mechanics which is not applicable on
the atomic scale (see also exercise 13).

If we increase the load and thus the stress intensity factor KI, the crack will
propagate when KI reaches a certain critical value, the fracture toughness KIc

(again, ‘I’ denotes loading in ‘mode I’). The fracture toughness is a material
property. Consequently, the failure criterion for loading in mode one is given
by

KIc = σc

√
πaY , (5.4)

where σc is the critical stress which will lead to crack propagation for a crack
of initial length 2a.

5.2.2 The energy balance of crack propagation

The propagation of a crack can be understood by calculating an energy bal-
ance. As the stress state of the material changes when the crack propagates,
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the elastic energy changes as well. In addition, energy is needed to break
the atomic bonds. Finally, external work can be performed on the system,
for instance by a shift in the loading point. The crack will only propagate
if the overall energy balance calculated from these contributions is positive
i. e., if energy is released during crack propagation. To define criteria for crack
propagation, these energy contributions have to be considered.

As before, we study the case of a infinite plate of thickness t that contains
an internal crack of length 2a and is loaded with a homogeneous stress σ
(see figure 5.3). In the following, we will only consider one half of the crack
(x1 ≥ 0, see figure 5.6); the other half is identical due to symmetry. All energy
contributions for the whole crack are thus twice the values given here.

Depending on the load case, the loading points of a load F may shift by
distance δ when the crack propagates, so an external work of

W =
1
2

∫ δ

0

Fdδ (5.5)

is done.5 The factor 1/2 stems from the fact that only half of the plate is
considered. A special case occurs if the loading points do not shift at all.
This may happen if the force is a constraining force necessary to enforce a
displacement boundary condition, a so-called dead load. It can also occur if
the crack is very small compared to the component, for instance – as in the
case here – if the component is assumed to be infinite.6 In both cases, the
external work is W = 0.

During crack propagation, changes in the stress and strain fields cause a
change in the stored elastic strain energy

U (el) =
∫∫∫

V

w(el) dV (5.6)

with an elastic energy density (see section 2.4.1)

w(el) =
∫

σij dεij . (5.7)

When the crack propagates by an amount da, new surfaces are formed
on both sides of the crack with an area of t da.7 To create new surface in a
5 As we consider an infinitely extended plate, the force F is, strictly speaking,

infinite as well. For a mathematically exact description it would be necessary to
normalise the energy and the force on a unit length in x1 direction. As we will
consider only stresses and energy densities in the following, this mathematical
nicety is irrelevant here.

6 This can also be explained by assuming that the forces at infinity are dead loads.
In this case, they will change only by an infinitesimal amount when the crack
propagates. If fixed loading points do not cause a change in the stress, a constant
stress can also not cause a change in the loading points.

7 Crack propagation by da means that both crack tips advance by da, so the total
crack length increases by 2da.
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material, energy is needed because atomic bonds have to be split. A measure
of this energy is the specific surface energy γ0. If the crack propagates by da,
the total surface energy Γ0 changes by

dΓ0 = 2γ0 t da . (5.8)

The energy is multiplied by 2 because of the two crack surfaces. In many cases,
additional work has to be done to create new surface by crack propagation,
for example when plastic deformation near the crack tip occurs in a metal
This energy contribution has also to be taken into account in calculating the
energy balance. This will be discussed in more detail below.

For the crack to propagate, the external work dW must at least equal the
change in the elastic energy and the surface energy.8 The condition for crack
propagation is therefore

dW = dU (el) + dΓ0 .

If we relate this energy differential to the crack propagation da and the thick-
ness t, the following equation results:

1
t

(
dW

da
− dU (el)

da

)
=

1
t

dΓ0

da
= 2γ0 . (5.9)

The energy available to create a new surface

GI =
1
t

(
dW

da
− dU (el)

da

)
(5.10)

is called the energy release rate or, occasionally, the crack-extension force. GI

can be considered as the energy per newly created crack surface (units J/m2)
or as a force acting on the crack and being normalised to unit thickness (units
N/m).

As already said, the crack can propagate if equation (5.9) is valid so that
the energy release rate reaches a critical value

GIc = 2γ0 . (5.11)

Accordingly, GIc is called the critical energy release rate for loading in mode I.
It is a material parameter that depends only on γ0 but not on the load or the
geometry.

We now want to estimate the change dU (el) in the stored elastic strain
energy during crack propagation. To do this, we again consider the case of
vanishing external work and assume a constant stress σ and a state of plane
stress.9 Furthermore, we define a state 1 in which a stress σR is applied to
the crack surfaces (see figure 5.7). At σR = σ, the crack is completely closed
8 In the case considered here, the external work is zero. The calculation is univer-

sally valid if dW is kept in the equations.
9 This is a valid assumption if the plate is thin compared to the crack length. Due

to the stress concentration near the crack tip, a state of plane strain will occur
when the plate is thick (see section 5.2.7).
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(a) Stage 1: Crack closed
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(b) Stage 2: Crack opened

Fig. 5.7. Opening of a crack by reducing a stress σR on the crack surface from σ
to 0

because the stress is then equal to the stress that would be present in a crack-
free material. In state 2 (σR = 0) the crack is opened with an ellipsoidal shape
according to equation (5.3).

The transition from state 1 to state 2 can be performed by reducing the
additional stress σR from σ to 0 while shifting the loading points with the
crack surfaces. To calculate the work ∆W , we first consider an infinitesimal
part of the crack with a length dx1 that is shifted from state 1 with a crack
opening of v = 0 to state 2 with a crack opening of v = v0(σ, x1). At each
point in time, a force σR t dx1 acts on this crack element because its area is
t dx1. The work needed to reduce the stress σR from σ to 0 is thus

d(∆W ) =
∫ v0(σ,x1)

0

(σR(v) t dx1) dv = t dx1

∫ v0(σ,x1)

0

σR(v) dv .

σR is a function of the momentary crack opening v that is given by equa-
tion (5.3) when σ is replaced by σ − σR.

As there is a linear relation between σR and v, the integral
∫

σR dv can be
changed to

∫
v dσR when the integration limits are changed accordingly:

d(∆W ) = t dx1

∫ 0

σ

v0(σ − σR, x1) dσR .

To calculate the work done on half of the crack length i. e., from 0 ≤ x1 ≤ a,
we have to integrate over this distance:

∆W = 2t

∫ a

0

∫ 0

σ

v0(σ − σR, x1) dσR dx1 , (5.12)
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The factor 2 is necessary because work is done on both sides of the crack. This
process does not create any additional surface; therefore ∆W is equal to the
change in the stored elastic strain energy ∆U (el). Using equation (5.3) yields

∆U (el) = 2t
∫ a

0

∫ 0

σ

2(σ − σR)
E

√
a2 − x2

1 dσR dx1

= −2t
σ2

E

∫ a

0

√
a2 − x2

1 dx1

= −t
σ2

E

[
x1

√
a2 − x2

1 + a2 arcsin
x1

a

]a

0

= − t

2
πa2σ2

E
. (5.13)

If the crack length increases by an amount da when a critical stress σc is
applied, the stored elastic strain energy changes by

dU (el) =
∂∆U (el)

∂a
da = −t

πaσ2
c

E
da . (5.14)

If we insert this into equation (5.9) and use the condition dW/da = 0, we
finally get

2γ0 =
σ2

cπa

E
,√

2γ0E = σc

√
πa ,√

GIcE = σc

√
πa . (5.15)

The left-hand side of the equation is again a material parameter. For any fixed
a, it determines the load at which the component will fail by crack propagation.
The right-hand side is (for the case Y = 1) equal to that of equation (5.4).
Fracture toughness and critical energy release rate are therefore related by
the following equation:

K2
Ic = GIcE . (5.16)

For arbitrary stresses in a state of plane stress, KI and GI are also related by

K2
I = GIE . (5.17)

So far, we have considered a state of plane stress. If the component is in
plane strain e. g., because it is so thick that transversal contraction is con-
strained, the relation between KI and GI changes to – stated here without
derivation –

K2
I = GI

E

1− ν2
. (5.18)

The relation (5.11) between the critical energy release rate and the specific
surface energy (GIc = 2γ0) is only valid for a completely elastic material. In
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Fig. 5.8. Plate of thickness t with a surface crack

metals, the high stresses near the crack tip always cause plastic deformations
that dissipate energy. In this case, crack propagation can occur only if the
energy is large enough to create new surface and to deform the material plas-
tically. The dissipated plastic energy is included in the critical energy release
rate GIc, making it and also KIc larger in metals and polymers than expected
by the surface energy alone. In ceramics, the formation of secondary cracks
may also cause an increase in GIc.

We now consider another geometry, a semi-infinite plate with a surface crack
of length a (figure 5.8). As this is just half of the geometry we used so far, it
might be assumed that there will be no change at all in the energy balance.
This, however, is not true because for the semi-infinite plate the left boundary
must be free of normal forces and can be displaced horizontally. If the state
is plane stress, the stress at the left boundary is uniaxial. This is not true
in the case of the infinite plane. Therefore, part of the stored elastic strain
energy will be released if the infinite plate is cut in two. As the elastic energy
density of a semi-infinite plate without a crack is the same as that of the
infinite plate, the semi-infinite plate can release more energy when the crack
advances. Consequently, the energy release rate GIc is larger and the crack
propagates at smaller stresses. This influence of the geometry is taken into
account by the geometry factor Y in equation (5.2). For the case considered
here it is given by Y = 1.1215.

If the crack length a is not small compared to the extension of the com-
ponent, the geometry factor can depend on the crack length: Y = Y (a). Ta-
ble 5.1 lists some geometry factors for common crack configurations. It has
to be kept in mind that the length of surface cracks is denoted by a, that of
internal cracks by 2a.

In using equation (5.2), it is important to always use the nominal stress σ
that does not take the reduction of the cross-sectional area by the crack into
account. This reduction is already accounted for by the crack-length depen-
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Table 5.1. Geometry factors for some geometries [58]

geometry geometry factor

Y = 1

Y = 1.121 5

Y =

r
2b

πa
tan

πa

2b

Y =
1− 0.025(a/b)2 + 0.06(a/b)4p

cos(πa/2b)

(plate-shaped crack) Y =
2

π

dence of Y .10 This is an important difference to the case of notches, where
the reduced cross section in the notch root is used to calculate the stresses
(see chapter 4).

So far, we only considered the case of vanishing external work. We already
stated that this is possible without restricting the generality of the results for
GIc. This will now be shown by comparing two examples.

∗ Loading by constraints (dead loads)

A plate of width w, length l, and thickness t with a surface crack is elongated
by a displacement δ = δ1 and then clamped between two walls so that δ
remains fixed (figure 5.9(a)). The force needed for this elongation is F (a) and
we assume that the crack length a does not change during the elongation.
10 For the infinite geometries we used so far, the geometry factor is constant because

a finite crack length does not cause a reduction of the infinite cross section.
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(a) Plate with constraints (b) Plate with free loads

Fig. 5.9. Plate with surface crack and different boundary conditions

If λ is the compliance, the inverse of the stiffness,

λ =
δ

F
, (5.19)

displacement by δ1 stores an elastic energy of

U (el) =
∫ δ1

0

Fdδ =
1
2

δ2
1

λ
. (5.20)

If we now propagate the crack by da at a constant displacement δ1, the change
in elastic energy is

dU (el)

da
= −1

2
δ2
1

λ2

dλ

da
. (5.21)

As the compliance increases during crack propagation, the stored energy de-
creases.

Because no external work is done (the loading points are fixed during crack
propagation), the energy release rate for crack propagation is (according to
equation (5.10)) given by

GI = −1
t

dU (el)

da
.

Using equation (5.21), we obtain

GI =
1
2t

δ2

λ2

dλ

da
=

F 2

2t

dλ

da
. (5.22)
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∗ Loading by constant force (free loads)

Now we load an identical plate until a force F is reached and afterwards keep
the force constant (figure 5.9(b)). Again, the crack length is a. According to
equation (5.20), the stored elastic strain energy is

U (el) =
1
2
F 2λ . (5.23)

If the crack propagates by da, the change in energy is

dU (el)

da
=

1
2
F 2 dλ

da
. (5.24)

Because of dλ/da > 0, the stored elastic strain energy increases in this load
case. During crack propagation by da, an external work dW = Fdδ = F 2dλ
is done. The energy release rate can be calculated using equation (5.10):

GI =
1
t

(
dW

da
− dU (el)

da

)
=

1
t

(
F 2 dλ

da
− 1

2
F 2 dλ

da

)
=

F 2

2t

dλ

da
, (5.25)

proving that both load cases yield the same result for the energy release rate.
As long as the stress fields are the same, the energy release rate is independent
of the load case. This assumption from section 5.2.2 is thus vindicated.

5.2.3 Dimensioning pre-cracked components under static loads

In sections 3.3.1 to 3.3.3 and 3.5.2, failure criteria for plastic deformation and
cleavage fracture were introduced. If a component contains a crack, it has to
be designed to avoid crack propagation as well. A component with a known
crack length a can resist a given stress σ only if

• the yield strength is not reached: σeq < Rp, with an equivalent stress σeq

defined according to Tresca or von Mises,
• the cleavage strength is not reached: σI < σC, and if
• the stress intensity factor is smaller than the fracture toughness: KI < KIc.

Thus,

σI <
KIc√
πaY

(5.26)

is required according to (5.2). Here we assumed, for reasons discussed in
section 5.1.1, that the largest principal stress σI is perpendicular to the
largest crack so that mode I loading is relevant.

If the component is loaded cyclically or at elevated temperatures, further
failure criteria have to be considered that will be discussed in chapters 10
and 11.
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Depending on the crack length, a ductile, pre-cracked material will fail by
plastic collapse or crack propagation. The crack length at which the material
will fail by crack propagation, and not by plastic collapse, depends on the
yield strength Rp and the fracture toughness KIc. The transition between the
two can be estimated by calculating the critical crack length ac for which both
criteria are met simultaneously:

KIc = Rp
√

πac Y . (5.27)

If the crack length is larger than the critical crack length, the material can be
expected to fail by crack propagation. The critical crack length is thus given
by

ac =
K2

Ic

πR2
pY 2

. (5.28)

For brittle materials, the limiting stress for failure in the absence of a crack
(denoted σlimit in the following) is given by the cleavage strength σC which is
approximately equal to the compressive strength Rcm, the maximal nominal
failure stress under compression (analogous to the tensile strength Rm).

Although the critical crack length is an indicator of the crack sensitivity
of a material, it is not a material parameter. This can be seen directly
from equation (5.28) which contains the geometry factor Y . For this
reason, analytically calculating ac is frequently impossible.

Even if a material starts to flow plastically without crack propaga-
tion, it is not guaranteed that crack propagation does not start later.
This is due to the hardening of the material that causes an increase
in the stress and thus in the stress intensity factor. For this reason,
another quantity is often used as limiting stress σlimit to calculate the
critical crack length in ductile materials, for instance (Rp + Rm)/2.

If the crack length is significantly smaller than the critical value, the material
fails by plastic collapse. Large plastic deformations occur near the crack tip,
rounding the crack tip without significant propagation. The specimen behaves
similar to a notched specimen without a crack. This can be visualised by form-
ing a ‘tensile specimen’ of plasticine and ‘pre-cracking’ it by cutting it with
a pair of scissors. If one pulls on the plasticine specimen, the crack vanishes,
leaving a notch.

If, on the other hand, a ≥ ac, the material fails by crack propagation. This
can also be visualised easily by cutting into a piece of paper and pulling on
the two halves.

In reality, the transition between plastic collapse and crack propagation is
not abrupt, but gradual. If we draw both failure limits into a diagram with
the stress σ and the stress intensity factor KI as axes, we obtain a failure-
assessment diagram (fad, figure 5.10). The dashed lines depict the idealised
behaviour with an abrupt transition between crack propagation and plastic
collapse; the solid line shows a more realistic behaviour.
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Fig. 5.10. Failure-assessment diagram (after [21]) in standardised form for Y =
const. The arrows show how the state of the loaded component changes when the
corresponding parameter is raised. Thus, increasing the limiting stress σlimit or the
initial crack length a increases the tendency for failure by crack propagation, whereas
increasing the fracture toughness KIc decreases it. Within the region marked with
epfm, elastic-plastic fracture mechanics has to be used because the plastic zone near
the crack tip is not small. This theory is the topic of section 5.3

It has to be noted that even below σ/σlimit = 1, strong plastic deforma-
tion occurs near the crack tip so that linear-elastic fracture mechanics
is not applicable here. Therefore, it is not surprising that failure by
crack propagation will occur exactly at KIc only if the relative stress
σ/σlimit is small.

Safety-critical components are frequently inspected by ultrasonic or X-ray test-
ing. If no indication of a crack is found (otherwise the component is scrapped),
the detection limit of the testing method is assumed as the size of the largest
crack. The component is dimensioned to ensure that even with a crack of this
size the safety margin to the failure limit in figure 5.10 is sufficient.

5.2.4 Fracture parameters of different materials

Table 5.2 shows the fracture toughness and the critical crack length of some
materials. For the calculation of the critical crack length with equation (5.28),
the yield strength Rp was used for metals and polymers and the compressive
strength Rcm for ceramics. The geometry factor Y was taken to be 1. It is
rather obvious that the fracture toughness KIc of metals is about one or two
orders of magnitude larger than that of ceramics. Accordingly, the critical
crack length in metals is much larger as well. This is due to the fact that
metals, with a yield strength that is comparable to the compressive strength of
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Table 5.2. Fracture toughness and crack sensitivity of some materials. The latter
is quantified by the critical crack length ac for Y = 1 [8,11,21,27]. Here, Rp is used
for metals and polymers and Rcm for ceramics. Typical values were taken from the
literature to calculate the critical crack length

material KIc/MPa
√

m Rp, Rcm/MPa ac/mm

40CrMo 4 60 480 5.0
40NiCrMo 6 60 1 550 0.5
30CrMoV21-14 124 1 080 4.2
chrome-nickel steel 50 1 640 0.3

90 1 420 1.3
Ti Al6V4 55 900 1.2

100 860 4.3
AlCu alloy 25 455 1.0

35 325 3.7

Al2O3 4.0 3 000 5.7× 10−4

Si3N4 5.0 1 200 5.5× 10−3

ZrO2 10.0 2 000 8.0× 10−3

porcelain 1.0 350 2.6× 10−3

polymethylmethacrylate (pmma) 1.6 64 0.2
polycarbonate (pc) 3.3 56 1.1
polyethylene (hdpe) 3.5 30 4.3

ceramics, deform plastically near the crack tip even if the material behaviour
is macroscopically linear-elastic. Thus, energy is needed not only to create
fresh surface, but also to deform the material. In ductile materials, this latter
contribution to the energy balance is much larger than the former.

The low fracture toughness of polymers does not mean that they are more
sensitive to cracks than metals. Due to their lower strength, they are loaded
less heavily than are metals so that their crack sensitivity is similar as can be
seen from the critical crack length values given.

We saw in section 5.2.2 that a crack propagates when the energy release
rate GI reaches the critical value GIc. Within each group of materials (for
example, low-alloy steels), the fracture toughness usually decreases with in-
creasing strength. This is plausible because the size of the plastic zone at a
certain stress level decreases with increasing Rp, thus reducing the energy
needed for plastic deformation, whereas the specific surface energy γ0 remains
approximately constant.

Figure 5.11 shows this fact graphically in form of a toughness-strength
diagram. In this diagram, the crucial parameter for failure by crack propaga-
tion, the fracture toughness KIc, is plotted on the ordinate. Depending on the
material, the parameter on the abscissa is a quantity relevant for failure by
plastic deformation or cleavage fracture. Materials situated in the upper left
of the diagram show large critical crack lengths and tend to fail by plastic
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Fig. 5.11. Toughness-strength diagram after Ashby [7]. The failure stress σlimit

of metals and polymers is the yield strength Rp; for ceramics, the compressive
strength Rcm is used which is approximately the same as the cleavage strength σC.
For composites, the tensile strength Rm has been used. ‘Yield’ is to be understood
as failure by plastic collapse instead of crack propagation. The diagonals depict pairs
of KIc and σlimit with constant critical crack length ac in units of mm

collapse; for materials in the lower right part, the critical crack length is small
and the tendency to fail by crack propagation is large.

5.2.5 Material behaviour during crack propagation

According to equation (5.4), the critical stress σc of a pre-cracked specimen is
given by

KIc = σc

√
πaY .

If we load the specimen with a stress σ = σc, we should expect that the
crack propagates without stopping because σc decreases with increasing crack
length. This can be illustrated by plotting the actual stress intensity factor
KI against the crack length a and comparing it to the fracture toughness KIc

(figure 5.12(a)). If a1 is the initial crack length, crack propagation starts at
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the critical stress σc. Afterwards, the calculated stress intensity factor would
be larger than the fracture toughness, KI > KIc for all crack lengths. Accord-
ingly, the crack propagates fast and the specimen fails. In reality, the stress
intensity factor KI can never exceed the fracture toughness KIc. We found
a corresponding situation for other failure criteria (yield condition, cleavage
fracture). Therefore, it is impossible to keep the load constant during crack
propagation. Instead, the load decreases as shown in figure 5.12(a). Crack
propagation occurring under this condition of decreasing load is called unsta-
ble.11

So far, we have assumed that the fracture toughness is constant and does
not change during crack propagation. This is not necessarily the case. In many
materials, the resistance against crack propagation initially increases during
crack propagation. This can happen when the propagating crack forms a so-
called process zone near the crack tip where energy is dissipated. In ductile
metallic materials, this is connected to the hardening in the plastic region near
the crack tip. In single-phase ceramics, the formation of secondary cracks can
dissipate additional energy [21]. This will be discussed further in section 7.2.
Increasing the crack-growth resistance by energy dissipation is also one major
aim in reinforcing materials with particles or fibres and will be treated in
chapters 7 and 9.

As the fracture toughness can change during crack propagation, another
material parameter is needed that describes the current resistance against
further crack growth, called crack-growth resistance or crack-extension resis-
tance KIR.12 The crack-growth resistance initially increases in materials form-
ing a process zone, a behaviour frequently denoted R curve behaviour. This
can be illustrated with a crack-growth resistance curve (R curve), where KIR

is plotted against the crack length a or the increase in crack length ∆a.
How crack propagation begins depends on the shape of the crack-growth

resistance curve and the initial crack length. Figure 5.12(b) shows the example
of a material with an increasing crack-growth resistance and a relatively large
initial crack length a2. Crack propagation starts at a stress σc2, but it can
only proceed if the stress is increased further. This case is called stable crack
propagation. The crack becomes unstable when the stress does not increase
on increasing the crack length i. e., at a stress σ = σ∗2 .13 The associated crack-
growth resistance is denoted by K∗

2 .
11 There are differing definitions of stable and unstable crack propagation in the

literature, based on the external load, as done here and in Gross [58], or on the
energy balance [21].

12 The situation is analogous to that in plastic deformation: The yield strength Rp

characterises the stress at the onset of plastic deformation, the actual flow stress
σF denotes the current stress during yielding.

13 Sometimes, this transition between stable and unstable crack propagation at K∗
I

is called KIc, for example in the standard astm e 561. In this book, KIc always
denotes the value of the stress intensity factor at which crack propagation starts.
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Fig. 5.12. Plot of the crack-growth resistance KIR and the stress σ versus the crack
length a for the case of constant KIR during crack propagation (1/2)

In contrast, figure 5.12(c) shows a configuration with the same crack-
growth resistance curve, but a smaller initial crack length a3. In this case, the
stress needed for the crack to propagate decreases from the start, although
the crack-growth resistance increases. Hence, crack propagation is unstable as
soon as KIc is reached. The critical stress σc3 is nevertheless larger than that
for the longer crack (σc2).

As the figures 5.12(b) and 5.12(c) illustrate, an increasing crack-growth
resistance KIR does not guarantee stable crack propagation because the stress
can still decrease.

If the load propagating the crack is displacement-controlled, a decreasing
load does not necessarily cause failure of the component. As the compliance of
the component increases with increasing crack length, the stress may become
small enough to stabilise the crack, a phenomenon called crack arresting.

We now want to estimate the stress intensity factor KI that marks
the onset of unstable crack propagation. This happens when the re-
quired external stress σ decreases or at least stops to increase on crack
propagation by a distance da. During crack propagation, the current
stress intensity factor KI, which depends on the stress σ and the crack
length a, must equal the crack-growth resistance KIR:
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KI(σ, a) = KIR(a) .

In order to meet this condition at any arbitrary time, the derivatives
must also be equal:

dKI(σ, a)

da
=

dKIR(a)

da
.

If we separate the left-hand side into its constituent terms, we get

∂KI(σ, a)

∂σ

∂σ

∂a
+

∂KI(σ, a)

∂a
=

dKIR(a)

da
.

As long as the load increases during crack propagation, ∂σ/∂a > 0

holds, and the crack propagation is stable. If the external load does not
increase anymore, ∂σ/∂a ≤ 0 holds. The condition for the transition
between stable and unstable crack propagation is thus ∂σ/∂a = 0. K∗

I

can be calculated by

∂KI(σ, a)

∂a

˛̨̨̨
KI=K∗

I

≥ dKIR(a)

da

˛̨̨̨
KI=K∗

I

. (5.29)



www.manaraa.com

150 5 Fracture mechanics

If the crack-growth resistance curve KIR(a) is known, this criterion
together with the condition KI(σ, a) = KIR(a) allows to calculate the
beginning of unstable crack propagation.

∗ 5.2.6 Subcritical crack propagation

So far, we have assumed that a crack is stationary if the stress intensity factor
is smaller than the fracture toughness KIc. This, however, is not always the
case. If, for instance, a corrosive medium penetrates the material along the
crack surface, it might weaken the material near the crack tip. This decreases
the fracture toughness locally and the crack can propagate, but only until it
reaches undamaged material. If this happens, a crack can slowly propagate
at loads below the critical load, a phenomenon called subcritical crack growth.
The crack propagates subcritically until the stress intensity factor KI equals
the fracture toughness KIc and the crack propagation becomes unstable.14
As the subcritical crack growth is time-dependent, it can be described by
the crack-growth rate da/dt, specifying the increment da by which the crack
propagates during an infinitesimal time dt.

Generally, subcritical crack growth occurs when the material near the crack
tip is weakened by time-dependent processes. Different physical phenomena
may be responsible for this.

In many metals, corrosive media like electrolytes can cause stress corrosion
cracking. Two different kinds of stress corrosion cracking can be distinguished.

In anodic stress corrosion cracking, loading accelerates corrosion at the
crack tip, resulting in crack propagation. This may happen in metals whose
surface is usually protected by a passivating layer. The crack tip can be acti-
vated, for instance by local plastic deformation, and the crack can propagate.
If a new passivating layer forms immediately on the freshly formed surface,
corrosion can only proceed at the crack tip, causing the crack to remain sharp-
edged. Whether anodic stress corrosion cracking can occur depends on the
surrounding media, the material and its state, the temperature, and the me-
chanical stress. In unfavourable circumstances, the required stress level may
be very small and even residual stresses may be sufficient to cause failure
by a delayed fracture (see section 3.5.3). Anodic stress corrosion cracking
can, for example, occur in the presence of chloride ions (e. g., in saline air) in
aluminium alloys and austenitic chrome nickel steels.15

14 In section 5.2.5, we saw that even above KIc a crack may still be stable if the
crack-growth resistance increases. If subcritical crack growth occurs, this effect
is usually negligible because the crack grows fast at stress intensity values close
to KIc.

15 This latter case is especially problematic because these steels are usually called
‘stainless’, implying a high level of corrosion resistance. However, in saline atmo-
sphere, the corrosion resistance of these steels is reduced.
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A different case is hydrogen-induced stress corrosion cracking. It occurs in
materials showing hydrogen embrittlement (see section 3.5.3, page 117). The
stress concentration near the crack tip dilates the crystal lattice. Hydrogen,
generated during the corrosion process, is therefore preferentially stored in
this region near the crack tip, reducing the fracture toughness in the most
stressed region. The crack propagates through the weakened material, and,
subsequently, hydrogen diffuses to the new crack tip. Hydrogen-induced stress
corrosion cracking is observed particularly in high-strength steels because here
elastic strains near the crack tip can be large and large amounts of hydrogen
can thus be stored.

Polymers show a similar effect in the presence of solvents. Solvents pre-
ferredly enter the material near the crack tip because the distance between
the molecules is increased there by the large tensile stresses. If, for instance, a
rod made of polymethylmethacrylate (Plexiglas) is bent and the tensile side
is wetted with acetone or alcohol, brittle fracture can occur after a short ex-
posure time. In this case, the cleavage strength is reduced because the dipole
bonds between the molecules are replaced by bonds formed with the solvent
(see also section 8.8).

Ceramics can also fail by subcritical crack growth due to stresses and
localised chemical reactions. In glasses, for instance, water can enter surface
defects and can attack the bonds between the silicon and the oxygen atoms if
these are strained by an external stress [9]:

Si−O−Si + H2O → Si−O−H + H−O−Si .

This reaction can cause a seemingly sudden failure of glasses. Subcritical crack
growth also occurs in crystalline ceramics, especially if they have a glassy
phase (see section 7.1) on the grain boundaries. Among the most sensitive
ceramics are silicate ceramics like porcelain or mullite, for they usually contain
a large amount of more than 20% glassy phases [19, 142]. Subcritical crack
growth can also be present in engineering ceramics, for instance in aluminium
oxide (Al2O3) in humid atmosphere or saline solution [104].

At elevated temperatures, metals and ceramics exhibit time-dependent
plastic deformation, called creep, a phenomenon to be discussed in detail in
chapter 11. If a pre-cracked material is loaded at high temperatures, the crack
can grow. In metals and ceramics, pores are frequently responsible for this
because they form and coalesce in the highly-stressed region in front of the
crack tip, often on grain boundaries [119] (see section 11.3). The crack thus
frequently propagates between the grains (intercrystalline fracture). This pro-
cess is called creep crack growth (ccg). In polymers, time-dependent plastic
deformation occurs already at ambient temperature (see section 8), and they
are thus also susceptible to creep crack growth.

Subcritical crack growth is determined by the temperature, the material,
and, for the low-temperature processes, the environment. In a given system,
the crack-growth rate frequently depends on the stress intensity factor KI

only. Below a certain, temperature-dependent limiting value KI0, crack growth
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vanishes completely or almost completely [104]. If KI exceeds KI0, the crack-
growth rate rapidly increases with increasing stress intensity factor. In many
cases (for example, in stress corrosion cracking), a plateau region follows i. e.,
the crack-growth rate is nearly constant for a certain range of KI-values. When
the stress intensity factor approaches KIc, the crack-growth rate increases
rapidly again. Examples for crack-growth rate curves and a mathematical
description of the crack-growth rate are discussed in section 7.2.6.

∗ 5.2.7 Measuring fracture parameters

In the previous sections, we introduced several important material parame-
ters: The fracture toughness KIc, the critical energy release rate GIc, and the
crack-growth resistance curve. We now want to see how these quantities are
measured.

A common feature of all experiments is that the test specimens are pre-
cracked. To achieve this, a notched sample is used and a crack is propagated
from this notch by cyclic loading (see chapter 10) as shown in figure 5.13.
Creating the initial crack in this way is necessary because the notch tip is
usually not sharp enough to behave like a true crack. Cyclic loading allows to
produce the initial crack at a load that is much smaller than that needed for
static experiments (see chapter 10).

Several specimen geometries are standardised, and the corresponding ge-
ometry factors are given in tabular form or by approximation functions [21,133,
138]. Among the most common specimen geometries are the three-point bend-
ing specimen (figure 5.14(a)) and the compact tension specimen, or ct speci-
men for short (figure 5.14(b)).

For the compact tension specimen, the stress intensity factor can be calcu-
lated from the external load F by

KI =
F

B
√

W
f(a/W) (5.30)
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Fig. 5.14. Standardised specimen geometries for fracture mechanical experiments

where

f(a/W) =
2 + a

W(
1− a

W

)3/2
× (5.31)[

0.886 + 4.64
a

W
− 13.32

( a

W

)2

+ 14.72
( a

W

)3

− 5.6
( a

W

)4
]

is the geometry factor. In calculating KI, it is important to note that the crack
length a is measured from the point of loading, not from the beginning of the
initial crack. This is easily understood because it is completely irrelevant for
the stress state near the crack tip how ‘wide’ the crack is some distance away.
It is only important that the initial crack is sharp-edged with a small radius
of curvature, and this is ensured by creating it through cyclic loading. The
quantities G, H, B, W , and s from figure 5.14(b) must, according to the
standard astm e 399, be related in a certain way: As an example, B = W/2,
s = 0.55W , H = 1.2W , and G = 1.25W are used for a standard ct specimen.
The initial crack length should be limited by 0.45W ≤ a ≤ 0.55W .
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∗ Measuring the fracture toughness

The procedure to measure KIc or GIc is independent of the specimen geometry.
The loading points are displaced with constant speed and the required force is
measured. If the force is plotted against the displacement of the loading points,
a load-displacement curve results as shown in figure 5.15. The onset of unstable
crack propagation can be seen from this curve because the force reaches a
maximum and drops, resulting in a larger compliance of the specimen. As the
experiment is displacement-controlled, the crack usually stabilises again due
to the unloading and propagates only when the crack is opened further. If the
size of the plastic zone near the crack tip is small compared to the volume
of the specimen, crack propagation starts without any noticeable deviation of
the loading curve from linear-elastic behaviour (see figure 5.16(a)).
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In contrast, the material behaviour shown in figure 5.16(b) indicates signif-
icant plastic deformation. The crack propagation is stable at first and becomes
unstable at a force Fmax. This shape of the curve is typical for ductile materi-
als. In this case, it has to be ensured that linear-elastic fracture mechanics is
still valid. Furthermore, it is not possible to determine from the curve alone at
which force crack propagation has started because stable crack propagation
and plastic deformation both reduce the slope of the curve. To determine the
facture toughness KIc, a pragmatic approach is taken, similar to the definition
of the yield strength Rp0.2. This will be described below.

A special case is shown in figure 5.16(c). On reaching a load FQ, the crack
propagates unstably for a certain distance and then becomes arrested. This is
called pop-in.

To determine the fracture toughness KIc, the following procedure has been
agreed upon (see e. g., standards astm e 399 and iso 12737):

We start by drawing a line with a slope of 95% of that of the elastic line
from the experiment (figure 5.16). The intersection of this line with the load-
displacement curve determines the force F5.16 Two cases can be distinguished:

• If F5 lies to the right of the force value at which the first reduction in the
load occurs, the force FQ is determined by this maximum (FQ = Fmax in
figure 5.16(a), FQ in figure 5.16(c)).

• If F5 is left to this maximum, FQ = F5 is used as a critical value (fig-
ure 5.16(b)). In this case, it has to be ensured that plastic deformation
was small enough to allow using linear-elastic fracture mechanics. A nec-
essary condition for this is

Fmax

FQ
≤ 1.1 . (5.32)

If this condition does not hold, the experiment has to be evaluated ac-
cording to the rules of elastic-plastic fracture mechanics, discussed in sec-
tion 5.3.

For a ct specimen, the critical stress intensity factor KQ is calculated from
FQ by using equation (5.30),

KQ =
FQ

B
√

W
f(a/W) .

For this, it is necessary to know the initial crack length. This can be measured
optically after the specimen has been fractured because the fracture surface
of the initial crack produced by cyclic loading can easily be discerned from
the statically produced crack surface (figure 5.17).

The value of KQ determined in this way does not depend on the material
only. Instead, the stress state near the crack tip, that in itself depends on
16 The subscript ‘5’ denotes the reduction of the slope by 5% used in constructing

the line.
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Fig. 5.17. Measuring the initial crack length

plain stress

plain stress

plain strain

plastic zone

Fig. 5.18. Size and shape of the plastic zone near the crack tip (dog bone, after [58])

the specimen geometry, may influence this value. This can be illustrated by
inspecting the plastic zone near the crack tip (see figure 5.18).

At the surface, the specimen is in a state of plane stress because no nor-
mal forces can be transmitted here. The smallest principal stress is thus zero.
Within the specimen, the stress state is a state of nearly plane strain because
the transversal contraction near the crack tip is constrained by the surround-
ing material. The stress state is thus a state of triaxial tension. Therefore, the
equivalent stresses and thus the plastic deformations are larger near the sur-
face than within the specimen. As plastic deformation dissipates energy, the
crack-growth resistance increases with decreasing thickness of the specimen
(see figure 5.19). For sufficiently thick specimens, the influence of the surface
zone with its state of plane stress can be neglected and the crack-growth
resistance KQ approaches a constant value, the fracture toughness KIc.

To ensure independence of the geometry and to determine the fracture
toughness as lower (and therefore safe) limiting value for the crack-growth
resistance of a material, a state of plane strain is required. Only if this can be
guaranteed, the measured value KQ is called fracture toughness KIc. Accord-
ing to the standards astm e 399 and iso 12737, this requires
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Fig. 5.19. Dependence of the measured KQ-values on the specimen thickness B.
For very thin specimens, the state of plane stress is dominant, for thick specimens
the behaviour is determined by the state of plane strain within the specimen. In the
region denoted as ‘mixed’, both states contribute

 B
a

W − a

 ≥ 2.5
(

KQ

Rp

)2

. (5.33)

This is a reasonable requirement as can be seen by estimating the size r of
the plastic zone from equation (5.1). If we insert KI = KQ in this equation,
we can estimate this size by setting σ̃22(x̃2 = 0) = Rp and solving for r = x̃1:

r ≈ 1
2π

(
KQ

Rp

)2

. (5.34)

Thus, equation (5.33) ensures that the plastic zone is small compared to the
specimen size.

∗ Measuring the crack-growth resistance curve

As explained in section 5.2.5, the crack-growth resistance curve is a plot of
the stress intensity factor versus the crack length a. Experiments are usu-
ally displacement-controlled to enable measurement of the load-displacement
curve after the maximum force has been exceeded.

To measure the crack-growth resistance curve according to astm e 561, the
load is applied step-wise, and the crack length is measured for each load value
after the crack has stabilised. For a complete curve, 10 to 15 measurement
values are needed. To avoid using several specimens for a single curve, the
crack length is measured during the experiment. This can be done in several
ways [21,43].

Optical methods measure the crack length directly on the polished
surface of the specimen. This method is rather simple, but its main
disadvantage is that the crack is only measured on the surface; the
crack length within the specimen is unknown.



www.manaraa.com

158 5 Fracture mechanics

The compliance method measures the compliance of the specimen
by unloading it during the experiment. Comparing the measured value
with a calibration curve determined on specimens with known crack
length, the crack length can be determined.

The electrical potential drop method uses the electrical resistance of
the specimen to measure the crack length. A constant electrical current
is applied between two points of the specimen far away from the crack
and the potential drop in the vicinity of the crack is measured. Com-
parison with a calibration curve allows calculation of the crack length.
Obviously, the specimen has to be electrically isolated from the testing
machine and the displacement transducer.

As before, it is necessary that the deformation of the specimen is mainly
elastic to allow use of linear-elastic fracture mechanics. For the crack-growth
resistance curve measurement, this can be ensured according to astm e 561
by the following condition:

W − a ≥ 4
π

(
Kmax

Rp

)2

.

From the measured values for the force Fi and the crack length increment
∆ai, the crack-growth resistance curve is calculated using equation (5.30).

∗ 5.3 Elastic-plastic fracture mechanics

In the previous sections, it was frequently stressed that linear-elastic fracture
mechanics can only be used if the plastic zone near the crack tip is sufficiently
small. If this is not the case, we enter the domain of elastic-plastic fracture
mechanics (epfm) which can deal with a large plastic zone. The method,
however, cannot be used for arbitrarily large plastic zones – plastic behaviour
must still be restricted to the region around the crack tip and must be mainly
determined by the surrounding elastic stress field.

Two alternative methods are commonly used to describe the state near
the crack tip: The crack tip opening displacement and the J integral. Both
methods can be shown to be mathematically equivalent.

∗ 5.3.1 Crack tip opening displacement (ctod)

In the crack tip opening displacement method (or ctod-method for short), it
is assumed that crack propagation is not determined by the stress intensity
factor, but by the amount of plastic deformation near the crack tip. This can
be measured by the opening δt of the crack tip. If this reaches a critical value
δc, the crack propagates.

The crack tip opening displacement can be defined in different ways. They
all have in common that it is assumed that the crack tip is blunted by the
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Fig. 5.20. One possible definition of the crack tip opening displacement δt

Fig. 5.21. Coordinate system and integration contour for the J integral

plastic deformation and that both crack surfaces are almost parallel, see fig-
ure 5.20. One possibility to determine δt is to draw two lines at an angle of 45°
to the crack line and measure the distance between their intersections with
the crack surface.

∗ 5.3.2 J integral

In section 5.2.2, we calculated the energy balance of a propagating plane crack
and predicted crack growth if the energy release rate reaches a critical value
GIc. The definition of GI in equation (5.10) was independent of the material
behaviour. Linear-elastic behaviour was only assumed to calculate the terms
in equation (5.12). The so-called J integral can quantify the energy release
rate without this assumption. For a crack geometry as sketched in figure 5.21,
J is defined as

J =
∫

C

[
w dx2 −

(
σ · ∂u

∂x1

)
· n ds

]
. (5.35)

Here C is a closed curve encircling the crack tip, w =
∫

σij dεij is the energy
density, u the displacement vector and n an outwardly pointing normal vector
on C as shown in figure 5.21. The derivation of the J integral and detailed ex-
planations can be found in appendix D. If no crack is present, equation (5.35)
yields J = 0. Strictly speaking, equation (5.35) is applicable only for elastic
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(but not necessarily linear-elastic) material behaviour. As long as the load-
ing is monotonous and no unloading occurs, it can also be used for plastic
deformations.17

The choice of the path C is arbitrary as long as it encloses the crack tip.
In practice – for instance when doing finite element simulations – it is usually
wise to put it not too close to the crack tip so that it runs only through
elastically deformed regions.

Equations (5.10) and (5.35) are equivalent. Therefore, for linear-elastic
materials and a state of plane stress, the equation

GI = J =
K2

I

E
(5.36)

holds. As for G, there is a critical value Jc, denoting the onset of crack propa-
gation. This will be discussed below in section 5.3.3.

We now want to show the equivalence of the J integral and the energy
release rate (equation (5.10)) by calculating the energy balance. This
is elaborated further in appendix D.6.

We start by looking at the second term of equation (5.10), dU (el)/da.
Using the elastic energy density w(el), we get

dU (el)

da
=

ZZZ
V

dw(el)

da
dV

or, for a plane geometry with specimen thickness t and a region A

containing the crack tip,

dU (el)

da
= t

ZZ
A

dw(el)

da
dx1dx2 . (5.37)

For an infinite plate, crack propagation by da in positive x1 direction
can also be considered as a shift of the integration region A in negative
x1 direction, resulting in

dU (el)

da
= −t

ZZ
A

dw(el)

dx1
dx1dx2 .

Gauss’ theorem [24] allows to convert an area integral over an area A

into a line integral along its boundary C.18 For the integral in question,
we thus get

−1

t

dU (el)

da
=

Z
C

w(el)dx2 ,

which corresponds to the first term in equation (5.35).

17 This is the reason why the energy density in equation (5.35) is called w, not w(el).
18 Here we use a simplified version of Gauss’ theorem for two dimensions (see ap-

pendix D.1).



www.manaraa.com

5.3 Elastic-plastic fracture mechanics 161

We now look at the first term in equation (5.10), dW/da. To calcu-
late the work dW done during an infinitesimal propagation of the crack,
a closed surface can be put around the crack tip. The work d(dW ) done
during this infinitesimal crack growth by da on an area element dS is
given by the product of the force dF acting on the area element and
the change in the displacement field du:

d(dW ) = dF · du . (5.38)

The force dF acting on the surface element dS can be calculated by
multiplying ∆S with the normal stress on the surface, σ n, where n is
the normal vector of the surface:

dF =
“
σ n

”
· dS .

For infinitesimal crack propagation by da, the displacement of the ma-
terial is given by

du =
∂u

∂a
da .

If we collect all these relations, put them into equation (5.38), and
normalise by da, we get

d(dW )

da
=

“
σ n

”
· ∂u

∂a
dS .

Integrating over the area S yields

dW

da
=

ZZ
S

“
σ n

”
· ∂u

∂a
dS

or, for a plane geometry with specimen thickness t,

dW

da
= t

Z
C

“
σ n

”
· ∂u

∂a
ds .

As σ is symmetric, the vectors n and ∂u/∂a can be exchanged. If we
again use dx1 = −da, we finally arrive at

1

t

dW

da
= −

Z
C

„
σ

∂u

∂x1

«
· n ds . (5.39)

This is the second term from equation (5.35). So, finally, we have shown
the equivalence between equation (5.10) and (5.35) as shown in equa-
tion (5.36).

∗ 5.3.3 Material behaviour during crack propagation

We saw in section 5.2.5 that the crack-growth resistance KIR in linear-elastic
fracture mechanics depends on the crack length increment ∆a. Similarly, the
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Fig. 5.22. JR crack-growth resistance curve in a ductile material up to the point of
crack initiation (after [21]). The different states of crack propagation are described
in the text

value of the J integral also changes during crack propagation. Analogous
to KIR, the value of the J integral during crack propagation is called JR crack-
growth resistance. As for KIR, a crack-growth resistance curve can be drawn
by plotting JR against the crack length increment ∆a (figure 5.22).

Crack propagation in ductile materials is different from that in brittle ones.
With increasing load, the material deforms plastically near the crack tip and
blunts it (subfigure 2○ in figure 5.22). This blunted region is called the stretch
zone.

Subsequently, due to the high stresses and large plastic deformations, cav-
ities form in front of the crack tip (cf. section 3.5.1), depicted in subfigures 3○
and 4○. During formation of the stretch zone and of cavities (subfigures 1○
to 4○), the relation between ∆a and JR is almost linear.

With increasing load, the cavities coalesce with each other and the crack,
causing a ‘true’ growth of the crack (subfigure 5○). This is called crack ini-
tiation and occurs when J reaches Jc [58].19 The slope of the crack-growth
resistance curve now decreases (see figure 5.22). The formation and coales-
cence of cavities or pores during crack propagation is characteristic for shear
fracture (section 3.5.1), producing the typical dimple fracture surface. The
state 5○ is different from the initial configuration 1○ for two reasons: The ma-
terial near the crack tip is now plastically deformed and has thus hardened,
and the crack surface is dimpled, resulting in a blunted crack tip.
19 Sometimes, this value of the J integral is denoted as Ji (where ‘i’ stands for ‘ini-

tiation’) [21]. In this case the value at the transition between stable and unstable
behaviour (called J∗ here) is called Jc.
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Contrary to brittle materials, in ductile materials even small loads can
cause (very small) crack growth. If the load is not raised further, this will not
cause any trouble, but if the load is cyclic, each repetition of the load will cause
a small crack propagation and finally cause a sufficiently large crack to destroy
the component. This so-called fatigue fracture is the topic of chapter 10.

The smaller the plastic region near the crack tip is, the steeper is the
line characterising the formation of the stretch zone. In the limiting case of
linear-elastic material behaviour, the line is vertical and the curve is similar
to that in figure 5.12. The smaller the unloading of the crack tip due to
plastic deformation is, the higher are the stresses near the crack tip. As the
stress state is triaxial, the danger of crack propagation by cleavage fracture
(see section 3.5.2) grows. The transition between dimple surface fracture for
ductile materials and cleavage fracture in brittle ones is not clear-cut, and
mixtures of both cases can occur.

The value of the J integral that marks the beginning of unstable crack
propagation can be calculated analogously to the stress intensity factor KI

in section 5.2.5. The critical J value J∗ is not the crack initiation value Jc.
At Jc, stable crack growth by coalescence of cavities begins; at J∗, the crack
starts to become unstable.

As unstable crack propagation causes an unloading of the material, the
J integral must not be used during this stage because, according to sec-
tion 5.3.2, the equations are not valid in this case, even when the experiment
is stabilised by displacement control.

∗ 5.3.4 Measuring elastic-plastic fracture mechanics parameters

As in linear-elastic fracture mechanics, specimens in elastic-plastic fracture
mechanics are also standardised. An initial crack is produced in the same way
by cyclic loading. The values of the J integral for crack propagation, Jc and
J∗, are read off the JR crack-growth resistance curve, so there is no need to
perform additional experiments.

We will now discuss the procedure using the example of a ct specimen
(figure 5.14(b)). The specimen is loaded using displacement-control, and a
load-displacement curve is measured. The resulting graph will look like the
one in figure 5.23. The area beneath the curve corresponds to the work done

WF =
∫ ∆s1

0

F (∆s, a) d(∆s) , (5.40)

with ∆s denoting the displacement of the loading points. From this, the J in-
tegral for a ct specimen is given by [21]

J =
WF

B(W − a)
· η (5.41)

with
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Fig. 5.23. Load-displacement curve to determine the JR crack-growth resistance

η = 2 + 0.522
(
1− a

W

)
.

As can be expected because of the definition of the J integral as an energy
release rate, the value of the J integral is directly connected to the external
work WF . The derivation of equation (5.41) can be found in Gross / Seelig [58]

To measure the JR crack-growth resistance curve, a direct or indirect mea-
surement of the crack length during the experiment is needed. This is done
using one of the methods described in section 5.2.7. It is not possible to mea-
sure the development of the crack length during the test after the experiment
on the fractured specimen.
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Mechanical behaviour of metals

As already mentioned in section 1.2, metals are characterised by their excel-
lent plastic deformability that is of great technical importance. On the one
hand, it allows to produce complex metallic components by forming processes
like forging or drawing. On the other hand, it causes metals to deform plas-
tically when the yield strength is reached, instead of failing catastrophically
by fracturing. This improves safety because overloading can often be detected
before disaster happens.

In this chapter, we will explain the mechanisms behind the plastic deforma-
tion of metals. Afterwards, we will discuss how the stress required for plastic
deformation can be increased, thus strengthening the material.

6.1 Theoretical strength

Plastic deformation is irreversible. Therefore, the configuration of the atoms
must be changed during plastic deformation, for otherwise they would return
to their original position on unloading. If we consider shearing a single crys-
tal as an example, it can be deformed plastically by sliding whole layers of
atoms against each other as shown in figure 6.1.1 For this sliding to happen,
the bonds between the atoms have to be stretched elastically until they can
switch to the next atom. The stress required for this process can be estimated
(see exercise 16) and is of the order of one fifth of the shear modulus of the
crystal. The yield strength predicted this way for metallic single crystals is
thus between 1 GPa and 25 GPa.

If we measure the strength of single crystals of pure metals, the values
found are several orders of magnitudes below this theoretical value and even
lie below that of engineering alloys. Typical values are in the range of a few
1 For simplicity, we usually use a simple cubic lattice in the sketches of crystals

shown in this chapter, although this is not a Bravais lattice found in any techni-
cally important metal.
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Fig. 6.1. Sliding of atomic planes in a perfect crystal

megapascal. As single crystals always contain lattice defects, one possible
explanation could be that these are responsible for the reduced strength. If,
however, the number of defects is reduced further, for instance by a heat
treatment, the yield strength becomes even smaller. Only an absolutely perfect
single crystal without any defects would possess a yield strength agreeing
with the theoretical prediction. This can only be nearly realised in so-called
whiskers (see section 6.2.8) which, however, are extremely small.

The reason for this spectacular failure of the theoretical prediction is that
plastic deformation does not occur by sliding of complete layers of atoms.
Instead, it proceeds by a mechanism that is based on a special type of lattice
defect, the dislocations. To understand plastic deformation of metals thus
requires an understanding of dislocations.

6.2 Dislocations

6.2.1 Types of dislocations

Dislocations are one-dimensional (line-shaped) lattice defects. Figure 6.2(a)
shows an edge dislocation, one of the two basic types. Its spatial structure can
most easily be visualised by imagining that an additional half-plane of atoms
is put into the crystal. In the vicinity of the line where this half plane ends,
the crystal is distorted, further away from it, it still is perfect.

An edge dislocation can be described by two vectors. The first is the line
vector t, the vector pointing in the direction of the dislocation line. The second
vector is the Burgers vector b that can be determined in the following way:
We draw a so-called Burgers circuit around the dislocation line that takes the
same amount of steps from one atom to the next in each direction as visualised
in figure 6.2. If the crystal were perfect, the circuit would be closed, but, due
to the lattice defect, it is not. An additional step is required to get back to the
starting point. The vector describing this step is the Burgers vector b. As long
as the Burgers circuit encloses the dislocation line, the Burgers vector defined
in this way is independent of the size and the shape of the circuit. As shown
in figure 6.2(a), the Burgers vector and the line vector of an edge dislocation
are perpendicular.

In our definition, we did not specify the direction of the circuit, but it has
to be chosen consistently. One simple way of doing this is to use a ‘right-hand
rule’ oriented on the line vector t of the dislocation line as shown in figure 6.3.
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Fig. 6.2. Types of dislocations. In the lattice models, a possible Burgers circuit is
marked

The choice for the direction of the line vector is arbitrary as well. If it is
reversed, the orientation of the Burgers vector reverses as well.

The second basic type of a dislocation, the screw dislocation is shown in
figure 6.2(b). It can be visualised by imagining that the crystal has slipped by
one atomic distance on a half plane ending at the dislocation line. The screw
dislocation can also be characterised by its line vector and Burgers vector. The
figure shows that both are parallel. If we move along a crystal plane around
the dislocation, the resulting path is helical and thus looks like a screw, which
explains the name of this dislocation type.

Dislocation lines are always either closed or end at the surface of the
crystal, but they can never end within the crystal. Why this is so can be seen
from figure 6.4. Imagine that a dislocation would end somewhere within the
crystal. The crystal is distorted in the vicinity of the dislocation line, but is
perfect at a sufficient distance away from the dislocation. We now walk on a



www.manaraa.com

168 6 Mechanical behaviour of metals

t

direction of

Burgers

circuit
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direction of a Burgers circuit
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Fig. 6.4. It is impossible for a dislocation line to end within the crystal because it
has to be possible to transfer one of the drawn circuits into the other in a continuous
way. This is not the case here because only one of the circuits has a non-zero Burgers
vector

Burgers circuit around the dislocation line and find a non-vanishing Burgers
vector. If we take an identical circuit somewhere far away from the dislocation
line, the Burgers vector would vanish. As both paths lie completely within the
undistorted perfect region of the crystal, it should be possible to create one
from the other by a parallel shift, but then, both should have the same Burgers
vector. Therefore, getting from one path to the other is only possible if we
intersect the dislocation line somewhere.

A dislocation line is usually not straight, but undulates through the crys-
tal on an intricately curved path with constantly changing line vector. The
Burgers vector, on the other hand, always remains constant. Therefore, a dis-
location can be edge-like in some region, screw-like in another and can have
a mixed character in between. The angle between a Burgers vector and a line
vector can vary between 0° und 90° as visualised in figure 6.5.

6.2.2 The stress field of a dislocation

Because dislocations distort the crystal lattice, an elastic stress field forms
around the dislocation line. This will now be shown using the example of an
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Fig. 6.5. Dislocation line in a crystal. The dislocation has the same constant Burgers
vector b over its whole length. The positions with edge dislocation character differ
by opposite line vectors t. Thus, the crystal half-planes are added from the top in
the one case and from the bottom in the other case

edge dislocation with a line vector along the x3 axis. Due to the insertion of
the half plane, we can expect compressive stresses on this side of the disloca-
tion and tensile stresses on the opposite side. The following equations for the
components of the stress tensor hold, given here without derivation [40]:

σ11 = − Gb

2π(1− ν)
· x2(3x2

1 + x2
2)

(x2
1 + x2

2)2
,

σ22 = − Gb

2π(1− ν)
· x2(x2

1 − x2
2)

(x2
1 + x2

2)2
, (6.1)

τ12 = − Gb

2π(1− ν)
· x1(3x2

1 − x2
2)

(x2
1 + x2

2)2
.
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As the local strain at the core of the dislocation in the direction of its line
vector, ε33(x1 = x2 = 0), must be the same as everywhere else in the material,
the stress state is a state of plane strain with ε33 = 0. Using Hooke’s law, we
thus find

σ33 = ν
(
σ11 + σ22

)
.

These equations have been derived using continuum mechanics. They are thus
only valid a few atomic distances away from the core of the dislocation; too
close to it the assumptions of continuum mechanics do not hold.

Figure 6.6 shows the components of the stress field and the hydrostatic
stress

σhyd =
1
3
(
σ11 + σ22 + σ33

)
(6.2)

around the dislocation. The plot of σhyd clearly shows the regions of compres-
sion on the side of the additional half-plane and the tensile stresses on the
other side. In figure 6.7, the stress distribution from figure 6.6 is illustrated
qualitatively.

Because the dislocation elastically deforms the lattice in its vicinity, elastic
energy is stored here. The more dislocations there are in a crystal, the higher
its stored elastic energy. If we try to elongate a dislocation line, for instance by
bending it, energy is needed. The stress near the dislocation line is, according
to equation (6.1), proportional to the product of the shear modulus G and the
Burgers vector b, while the displacement is proportional to the Burgers vector.
Thus, the stored energy T per unit length of dislocation is approximately2

T ≈ Gb2

2
. (6.3)

The energy per unit length T has the unit of a force. Analogous to a taut string,
T can be considered as a force ‘stretching’ the dislocation line. Therefore, T
is often called the line tension of the dislocation. Frequently, its value is of
the order of 10−9 N.

6.2.3 Dislocation movement

If a sufficiently large shear stress acts on a dislocation, the dislocation moves
through the crystal. How this happens is shown in figure 6.8 for an edge disloca-
tion: Near the dislocation line, the atoms are displaced from their equilibrium
positions, stretching and compressing the atomic bonds. If an external shear
stress is applied, trying to shift the upper crystal plane relative to the lower,
2 The exact value of T depends on the type of dislocation i. e., on the orientation

of b and t, and on the curvature of the dislocation line. For the considerations
that follow, the estimate given here is sufficient.
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Fig. 6.6. Stress distribution near an edge dislocation oriented in the x3 direction in
aluminium. Values are cut at ±100MPa. Compressive stresses are printed in dark
colour
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location using infinitesimal material ele-
ments

one bond of the atom in the dislocation line will be stretched, but the next
will be compressed. Thus the atom can exchange its partner by flipping the
bond from one atom to the next. This process is repeated until the dislocation
has travelled to the surface of the crystal and the upper half of the crystal has
been displaced relative to the lower one. In the case of an edge dislocation,
the slip of the crystal is on a plane in the direction of the dislocation move-
ment. The dislocation eases plastic deformation of the crystal in two ways:
The atomic bonds are already stretched and compressed, and the slip of the
crystal does not have to occur simultaneously for all atoms on the slip plane.
The deformation is irreversible, hence plastic, because the dislocation will not
move back to its starting point when the crystal is unloaded. The volume of
the crystal does not change in this process, thus finally explaining the state-
ment from chapter 3 that plastic deformation keeps the volume constant and
is independent of the hydrostatic stress.

Figure 6.9 shows the slipping of the crystal for a screw dislocation. Again,
atomic bonds are switched during dislocation movement. The slip plane for
a screw dislocation contains the dislocation line and the Burgers vector. In
contrast to the edge dislocation, the slip plane is not uniquely determined as
shown in figure 6.9. The screw dislocation moves perpendicular to the applied
shear stress and to the slip.

The slip of a mixed dislocation follows from the cases already discussed. If
we consider the example of a dislocation loop (figure 6.10), the loop increases
or decreases its diameter when a shear stress is applied because the edge
dislocation moves in the direction of the shear stress and the screw dislocation
moves perpendicular to it. A dislocation loop changes its shape uniformly if
both types of dislocation have the same mobility.

If, on the other hand, one type of dislocation moves less easily than the
other, dislocation movement is at first dominated by the more mobile type as
sketched in figure 6.11. This increases the length of the less mobile type. In
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(a) Unloaded (b) Elastically deformed

(c) Plastically deformed, the
bond has ‘flipped’

(d) Unloaded but plastically
deformed

Fig. 6.8. Schematic illustration of the slip of an edge dislocation. The applied shear
stress strains bonds in the vicinity of the dislocation, causing the bond to flip from
one atom to the other. The dislocation moves by one lattice position. The distortions
are strongly exaggerated

the end, this type will therefore strongly influence the plastic behaviour and
the required stresses.

6.2.4 Slip systems

During dislocation movement, parts of the crystal slip relative to each other.
The slip direction and the amount of slip are determined by the Burgers vec-
tor b. For an edge dislocation, the slip direction is also the direction of the
dislocation movement, for a screw dislocation, these directions are perpendicu-
lar. The plane separating the two slipped crystal parts is called the slip plane,
and the combination of slip direction and slip plane is called a slip system.

Figure 6.12 illustrates slipping of a crystal with the slip direction and the
slip plane. As slipping occurs by dislocation movement along the slip plane,
the dislocation line t, the Burgers vector b and the direction of movement v
must all lie within it. The normal vector on the slip plane must thus fulfil the
conditions

n ⊥ b ∧ n ⊥ t ∧ n ⊥ v . (6.4)
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(a) Initial state

¿

¿

¿

¿

(b) First slip direction

¿

¿

¿

¿

(c) Second slip direction

Fig. 6.9. Slip of a screw dislocation. The deformation can occur by slip in both
shown directions (cf. section 6.2.4)

b ⇒ b

Fig. 6.10. Slip of a dislocation loop

For an edge or a mixed dislocation, b and t are not parallel and the slip plane
is uniquely determined by the dislocation itself:

n =
b× t

|b× t|
.

For a screw dislocation, this is different because b and t are parallel. The
direction of movement is thus not determined uniquely. The dislocation can
move on different planes and can thus overcome obstacles by cross slip (cf.
figure 6.9). During cross slip, it changes from the slip plane with the largest
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a.

b

b.
b

c.
b b

Fig. 6.11. Non-uniform slip of a dislocation loop

slip plane

slip direction

(a) Before slip

slip plane

slip direction

(b) After slip

Fig. 6.12. Slip plane and slip direction in a crystal

shear stress to another one with smaller resultant stress (see section 6.2.5).
Edge dislocations can use a similar mechanism only at elevated temperatures
by so-called climb, explained in sections 6.3.4 and 11.2.2.

Movement of a dislocation is the easier, the closer packed the slip plane
and the slip direction are. Therefore, slip planes and directions are preferredly
close-packed. If we assume that atoms are simple spheres and that slipping
occurs simultaneously on the whole plane, this fact can be visualised easily
(figure 6.13). To slip one atomic plane against the other, the atoms have to be
lifted only by a small amount in the case of closest packing (figure 6.13(a)). If
the packing is less dense, the upper plane has to be lifted more (figure 6.13(b)),
and slipping is more difficult. Any crystal lattice can only form certain distinct
Burgers vectors, and, therefore, the crystal can slip only along certain planes
in certain directions. In the following sections, we discuss the slip systems of
the most important lattices.

Face-centred cubic crystal

The face-centred cubic crystal is close-packed (see section 1.2.2). Planes of
type {111} and directions of the type 〈110〉 are close-packed and thus form
the slip systems (figure 6.14). If we consider planes as identical differing only
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(a) Close-packed plane or direction. Slip is relatively easy, as the upper
array of spheres has to be lifted only slightly

(b) Non-close-packed plane or direction. Slip is hampered, as the upper
array of spheres has to be lifted further

Fig. 6.13. Illustration of slip on the basis of spheres

(a) Lattice model (b) Sphere model (c) All four slip planes in one
figure

Fig. 6.14. Slip systems in face-centred cubic metals. The slip planes are the body
diagonals; the slip directions lie on the plane diagonals or on the edges of the octa-
hedron in figure (c), respectively

Table 6.1. Slip systems in face-centred cubic metals

slip plane slip direction number of directions number
planes per plane (total)

{111} 〈110〉 4 3 12
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(a) Illustration of a slip plane in the
unit cell. Both slip directions are plot-
ted as dashed lines

(b) Sphere model. The stacking of the
type of slip planes shown in (a) is
marked by colours

Fig. 6.15. {110}〈111〉 slip systems in body-centred cubic metals

Table 6.2. Slip systems in body-centred cubic metals

slip plane slip direction count of directions count
planes per plane (total)

{110} 〈111〉 6 2 12

{112} 〈111〉 12 1 12

{123} 〈111〉 24 1 24

in the orientation, but not in the direction of the normal vector, there are four
independent slip planes as visualised in figure 6.14(c). Each of these planes
has three independent slip directions. Altogether, we thus have 4 × 3 = 12
independent slip systems in this Bravais lattice. Table 6.1 lists the slip systems
in face-centred cubic crystals.

Body-centred cubic crystal

The body-centred cubic crystal is not close-packed. The slip systems with the
closest packed directions and planes in this lattice are of the type {110}〈111〉
(figure 6.15). With two slip directions per plane and six different slip planes,
twelve slip systems result. As summarised in table 6.2, slip is also possible
on other crystallographic planes that are only slightly more difficult to acti-
vate [55].
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(a) Illustration of one slip plane in the
unit cell. The dashed diagonals are the
three slip directions

(b) Sphere model. The stacking of close-
packed slip planes is marked by colours

Fig. 6.16. Basal slip systems in hexagonal metals

Hexagonal close-packed crystal

As the name implies, the hexagonal close-packed crystal has the highest pos-
sible packing density. Its stacking sequence (cf. figure 1.9) differs from that of
the face-centred cubic lattice. Only the {0001}-basal planes are close-packed.
They contain the three 〈1120〉 close-packed directions, resulting in only three
independent slip systems (figure 6.16).

Three independent slip systems are not sufficient for arbitrary deforma-
tions. For the hexagonal crystal, this is easily understood because shear de-
formation out of the common slip plane of the three systems is impossible.
Therefore, other, more difficult, slip systems must be activated. Because real
metals never show the ideal hexagonal structure, but possess either a stretched
or a compressed unit cell (varying ratio c/a), it depends on the chemical el-
ement which other systems are activated. Table 6.3 gives a synopsis of the
most important slip systems. The slip systems with the horizontal slip plane
are called basal slip systems. If the slip planes are on the prism faces of the
unit cell, they are called prismatic slip systems. The other slip systems are
called pyramidal slip systems.

6.2.5 The critical resolved shear stress

It was stated in section 6.2.3 that a dislocation will start to move if a suffi-
ciently large shear stress acts on the slip system. This stress value is called
critical resolved shear stress τcrit. It is not equal to the yield strength τF of an
isotropic material under shear loading because in the latter case different slip
systems have to be activated that are usually not parallel to the shear stress.
For a single crystal, the yield criterion (cf. section 3.3.1) is
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Table 6.3. Overview over slip systems in hexagonal metals

slip plane slip direction count examples
count count/plane (total)

Burgers vector in basal plane

{0001} 〈1120〉
1 3 3 Cd, Zn, Mg, Ti, Zr

{0110} 〈2110〉
3 1 3 Ti, Zr

{0111} 〈2110〉
6 1 6 Ti, Mg, Zr

{0112} 〈2110〉
6 1 6 Zn

{1122} 〈1100〉
6 1 6 Ti

Burgers vector out of basal plane

{0110} 〈2113〉
3 2 6 Zn

{0111} 〈2113〉
6 2 12 Zr

{1121} 〈2113〉
6 2 12 Zn, Zr

{1122} 〈2113〉
6 2 12 Zn

τ (ss) = τcrit , (6.5)

where τ (ss) is the shear stress in the slip system.
Only in special cases will the external shear stress be exactly parallel to the

slip system. Usually, it is thus necessary to calculate the resolved shear stress
i. e., the stress component acting as shear stress on the considered slip system
in the slip direction. If we restrict ourselves to the case of uniaxial loading as
in a tensile test, the calculation of this component is not too difficult.3 We
3 The more general derivation for arbitrary stress states will be discussed at the

end of the section.
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Fig. 6.17. Orientation of a slip system in a tensile test
specimen

consider a certain slip system in the uniaxially loaded tensile test specimen
sketched in figure 6.17. Let n be the normal vector of the slip plane, m the slip
direction, and A0 the cross section of the specimen. The area of the inclined
slip plane is A. To calculate the component of the force in the slip direction,
we have to project the external force F onto the direction m:

Fm = F cos λ .

If we now relate both forces to the area they are acting upon and use τ (ss) =
Fm/A and σ = F/A0, we arrive at

τ (ss)A = σA0 cos λ . (6.6)

The area of the slip system in the specimen is

A =
A0

cos θ
.

Putting this into equation (6.6) results in the resolved shear stress (or Schmid
stress)

τ (ss) = σ cos λ cos θ . (6.7)

This equation determines the shear stress in a slip system resulting from the
external stress and the orientation of the system. The factor cos λ cos θ is
known as the Schmid factor. If the resolved shear stress reaches the critical
value τcrit, the material yields. The yield criterion for uniaxial loading is thus

σ cos λ cos θ = τcrit . (6.8)

As n and m are always perpendicular, the Schmid factor has a maximum
value of 0.5 when λ = θ = 45°. In this case, the yield strength measured in
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the tensile test is twice the shear stress needed to activate the slip system. If
the slip system is oriented in a non-optimal way, the yield strength is even
larger. Note that this calculation is purely continuum mechanical. Dislocation
theory is only needed to ascertain that it is the shear stresses that determine
the plastic deformation and that slip can occur only on certain planes.

That the largest shear stress component in a uniaxially loaded specimen
is half of the normal stress can also be seen from Mohr’s circle [58] (see sec-
tion 2.2.1). The principal stresses are σI = σ and σII = σIII = 0, resulting
in a Mohr’s circle with radius σ/2, leading to a maximum shear stress of
τmax = 0.5 σ.

The resolved shear stress can also be calculated for arbitrary stress
states σ. To calculate, we first calculate the traction vector t on the
slip plane with normal vector n

t = σ · n .

The resolved shear stress in the slip direction m can be calculated from
this by projecting t onto m:

τ (ss) = t ·m .

If we insert one equation into the other, we obtain

τ (ss) =
`
σ · n

´
·m . (6.9)

This results in the yield criterion`
σ · n

´
·m = τcrit . (6.10)

To compare the general equation (6.9) with the uniaxial case, we
chose the x1 axis parallel to the external load. The stress tensor is then

σ =

0@ σ11 0 0

0 0 0

0 0 0

1A .

Thus, only the x1 components of n und m are important; they are
n1 = cos θ and m1 = cos λ. Inserting this into equation (6.9), we get

τ (ss) = σ11 cos θ cos λ .

This is identical to equation (6.7) derived previously for the uniaxial
case.

Since crystals have several different slip systems, as explained in section 6.2.4,
the resolved shear stress on all possible slip planes has to be calculated to de-
termine whether the material will yield. The slip system that is oriented most
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favourably towards the external load and thus possesses the largest Schmid
factor will be activated first.

6.2.6 Taylor factor

In the previous section, we saw how the resolved shear stress required to
activate a slip system in a single crystal can be calculated from the external
stress. If τcrit is the critical stress needed to activate slip, the external stress
is connected to τcrit by the Schmid factor cos λ cos θ for a single crystal.

Most engineering alloys are polycrystalline. To calculate the yield strength
from the critical resolved shear stress in an isotropic, polycrystalline material,
we have to take into account that the grains are oriented in an arbitrary
manner. We thus have to take the average of all possible crystal orientations.

Furthermore, the deformation of neighbouring grains has to be compatible.
For instance, it is not possible to deform a certain grain with favourable
orientation without also deforming its neighbours, because the grains would
overlap or gaps would open between them. A plausible assumption is that all
grains deform similarly. For this, at least five slip systems must be activated
in each grain.

That the number of slip systems to be activated is five can be explained
as follows: An arbitrary deformation has six independent components of the
strain tensor (see section 2.4.2). Because plastic deformation does not change
the volume, each one of these components is dependent on the others, and
five independent components remain, corresponding to the required five slip
systems.

This relation between the components of the strain tensor at constant
volume can be derived by considering the deformation of a cuboid with
edges l1, l2, l3 that is deformed until the edge lengths are l1 + ∆l1,
l2 + ∆l2, l3 + ∆l3. Since the volume is constant, the relation

(l1 + ∆l1)(l2 + ∆l2)(l3 + ∆l3) = l1l2l3

holds, resulting in

(1 + ε11)(1 + ε22)(1 + ε33) = 1 .

For small strains, products of strains can be neglected. This yields the
equation

ε11 + ε22 + ε33 = 0 . (6.11)

Equation (6.11) relates the three components ε11, ε22, and ε33, so only
two of them are independent. If we add the three off-diagonal compo-
nents ε23, ε13, and ε12 that do not change the volume, the number of
independent components is five.
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Because the assumption of small strains is not always valid in plastic
deformation, equation (6.11) becomes more and more imprecise with
increasing strains. To circumvent this problem, we can consider only
strain increments:

dε11 + dε22 + dε33 = 0 ,

or, using time derivatives,

ε̇11 + ε̇22 + ε̇33 = 0

at any arbitrary time.

If we take these effects into account, the Schmid factor has to be replaced in a
polycrystalline material by another number, the Taylor factor M . For a face-
centred cubic material, M takes a value of 3.1 [34]. The relation between the
critical resolved shear stress τcrit and the yield strength measured in uniaxial
tension σF thus is

σF = M τcrit . (6.12)

This value of the Taylor factor has also been confirmed experimentally.
Throughout section 6.4, we will use the Taylor factor to calculate the influ-
ence of strengthening mechanisms, which affect the critical shear stress, on
the uniaxially measured yield strength.

The derivation of the Taylor factor is rather involved. Here, we only
want to sketch the main ideas for the example of a face-centred cubic
lattice. A detailed discussion can be found in Cottrell [34].

To calculate the average over all possible grain orientations is not
too difficult. It is necessary to calculate the probability that an arbitrar-
ily oriented grain has a certain value of the Schmid factor cos λ cos θ.
Then, the average of the resulting probability distribution has to be
taken. If this is done, an incorrect value of 2.2 results for the Taylor
factor.

For a correct calculation, it has to be taken into account that five
different slip systems must be activated in each grain to enable an
arbitrary deformation. Some of these are oriented less favourably, thus
increasing the value of the Taylor factor. To precisely determine its
value, the five best-oriented slip systems have to be determined for each
crystal orientation. As there are

`
12
5

´
= 792 possibilities to choose five

systems out of twelve, this calculation is involved. In addition, normal
stresses on the grain boundaries have to be continuous, and this has
also to be accounted for. Finally, the average over all possible grain
orientations is taken to arrive at the Taylor factor.

In this calculation of the yield strength, the average over all possi-
ble grain orientations is taken. Therefore, we can expect that plastic
deformation will occur at smaller values of stress in favourably oriented
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Fig. 6.18. Formation of a low-angle grain boundary
by an arrangement of dislocations

grains. This is indeed the case, but the amount of deformation is small
because of the compatibility problem discussed above. Larger plastic
deformations can therefore occur only when dislocation movement has
started in a sufficient number of grains. This consideration shows that
the transition between elastic and plastic behaviour of a metal is not
clear-cut, but gradual. This is reflected in the typical flow curve of a
metal and is the reason why the yield strength is usually defined using
the 0.2% proof stress Rp0.2 (cf. section 3.2).

6.2.7 Dislocation interaction

The stress field around a dislocation (cf. figures 6.6 and 6.7) can interact with
the fields of other dislocations. If, for instance, two edge dislocations with the
same line vector t and Burgers vector b are situated on the same slip plane,
their tensile and compressive stresses are added, resulting in an increase in the
stored elastic energy. This can easily be seen by the following experiment of
thought: If we unite the two dislocations to a single one with Burgers vector 2b,
the stored line energy is T = G(2b)2/2 = 2Gb2. If the two dislocations are far
apart, the sum of their line energies is only T = 2Gb2/2 = Gb2. The stored
energy is reduced if the two dislocations move apart, resulting in a repulsion.

If two identically oriented edge dislocations are parallel and lie almost on
top of each other, the tensile stress field of one overlaps with the compressive
stress field of the other. This is energetically favourable, so the dislocations
attract and, in the ideal case, finally stop if one is exactly on top of the other.
If several dislocations are arranged in this way, the crystal regions on both
sides of the dislocation lines are tilted (figure 6.18). This is called a low-angle
grain boundary.

It can be seen from figure 6.7 that the edge dislocation shown will repel
another, identically oriented, dislocation when it is positioned in regions I,
IV, V, or VIII. In the other regions, the dislocation is attracted. In both
cases, dislocation movement may be hampered, depending on the direction
of movement. If the dislocations repel each other, this is obvious because
energy is needed to overcome the barrier. If they attract, the released energy
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will dissipate as heat. To dislodge the dislocations from their energetically
favourable position, energy is needed.

For oppositely oriented dislocations, the attractive and repulsive regions
are exactly reversed. Similar considerations are also valid for screw disloca-
tions.

6.2.8 Generation, multiplication and annihilation of dislocations

The line energy of dislocations is rather large. To create a dislocation by ther-
mal activation (see appendix C.1) is therefore a highly improbable process
(calculated in exercise 18), and the dislocation density in a metal in thermal
equilibrium would be vanishingly small. Real metals usually show dislocation
densities4 between 1012 m−2 and 1016 m−2. Even in extremely pure single crys-
tals, for instance made of 99.999 999 9% germanium, the dislocation density
is about 107 m−2 [98]. This discrepancy between realistic values of the dislo-
cation density and those expected from thermal equilibrium is due to the fact
that dislocations are created when the crystal solidifies from the melt.

If one tries to calculate the speed of crystallisation, it is found that the
calculated value for a perfect crystal is much smaller than the value measured
for real crystals. The energy gain to attach a single atom to a smooth surface
is rather small because the number of bonds is small. The probability of
such a process is thus low because the attached atom can easily be removed
by thermal activation. Therefore, crystals grow preferredly at lattice defects,
such as screw dislocations. If such a screw ends at the crystal surface, atoms
can attach more easily because they can develop more atomic bonds than
on a smooth surface. It is thus almost impossible to create an absolutely
perfect crystal without a single dislocation. This mechanism of crystal growth
is exploited to produce so-called whiskers: Whiskers are long, thin fibres grown
around a single screw dislocation in their centre. In the ideal case, they contain
only this single dislocation and can thus possess a strength that is close to the
theoretically expected value for a single crystal. Whiskers are used as fibres
in fibre-reinforced materials (see chapter 9).

Furthermore, dislocations are generated during plastic deformation of met-
als, thus providing another cause for the high dislocation densities observed.
As dislocation lines cannot begin or end within the crystal, new dislocations
can be created either at (inner) surfaces of the crystal, especially at grain
boundaries, or in special configurations. One such configuration is the Frank-
Read source (Fig 6.19). It consists of a dislocation that is pinned at two
points in the crystal, where the dislocation leaves the slip plane. With increas-
ing stress, the pinned segment bows out, until it becomes unstable when a
semi-circular geometry is attained (see also section 6.3.1). Further bow-out of
4 Because dislocations are one-dimensional, the dislocation density can be measured

as length per volume or as the number of penetration points in a plane within
the crystal. It unit is thus 1/length2.
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⇒ ⇒

⇒ ⇒

Fig. 6.19. Formation of dislocations by a Frank-Read source

⇒ ⇒

Fig. 6.20. Spiral propagation of a dislocation

the dislocation needs no more increase in the stress. The two arms of the dis-
location approach and, as discussed in section 6.2.7, attract each other. They
can then annihilate, as will be explained below, resulting in a dislocation loop
enclosing the original dislocation, so the process can repeat itself.

Another possibility to increase the dislocation density is a spiral disloca-
tion, pinned at the centre. Similar to a dislocation loop, the spiral dislocation
extends when shear stresses are acting on it. As its centre is pinned, the length
of the spiral grows (figure 6.20). This process does not increase the number
of dislocations, but their density.

As mentioned above in the context of the Frank-Read source, dislocations
can also be annihilated. A simple example are two opposite edge dislocations
moving on the same slip plane. As explained in section 6.2.7, the superposition
of their stress fields causes an attraction. If they approach, the additional
upper and lower half planes can unite and form a complete plane, causing the
dislocations to vanish.

Generally, annihilation of dislocations can only happen if they meet exactly
on the same slip plane. In addition, they have to be oriented so that the newly
generated dislocation segments have the same Burgers vector and a continuous
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b1t1 b2
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b1't1' b2
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(a) Before the annihilation. In the left figure, both
Burgers vectors have the opposite orientation; in the
right figure, the line vectors have the oposite ori-
entation. Both notations of the vectors (b1, t1) and
(b1′ , t1′) are equivalent. The adjacent dislocation seg-
ments attract and annihilate

b1't1'

bb

tb
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ta

(b) After the annihilation

Fig. 6.21. Annihilation of dislocation segments

line vector. Thus before annihilation, both dislocations must either have the
same line vector, but opposite Burgers vectors (t1 = t2, b1 = −b2), or opposite
line vectors and the same Burgers vector (t1 = −t2, b1 = b2). This is illustrated
in figure 6.21.

That all these conditions are fulfilled simultaneously seems rather improb-
able. At the onset of plastic deformation, this is indeed true, and more dislo-
cations are generated than annihilated. If plastic strains are large, the number
of dislocations becomes larger, and there are more annihilations, until a sta-
tionary value of the dislocation density is reached.

If we raise the temperature in a metal, edge dislocations can change their
slip plane by a process called climb, increasing the probability of annihila-
tion. The dislocation density thus reduces. In addition, the remaining disloca-
tions arrange in an energetically more favourable configuration. This process
is called recovery.

6.2.9 Forces acting on dislocations

Force by external shear stress

We first want to calculate the force exerted on a dislocation by an external
shear stress. Consider a straight dislocation line of length l1 that is moved over
a distance l2 by the external stress τ (figure 6.22). For simplicity, we assume
that the shear stress is perpendicular to the dislocation line and parallel to
the slip plane. The external force Fext is Fext = τ l1l2 because the stress τ acts
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¿

¿
l2

l1

Fig. 6.22. Straight dislocation line
subjected to a shear stress

on an area l1l2. When the dislocation has moved by l2, the upper half of the
crystal has slipped by one Burgers vector b. This requires a work of

E = Fext · b = τ l1 l2b . (6.13)

The dislocation has moved by a distance l2. The work needed can also be
calculated by E = Fdl2, when Fd denotes the force on the dislocation. As
both energies are equal, the force on the dislocation is

Fd = τ l1b . (6.14)

Here we used the fact that the force is perpendicular on the dislocation line.
If the orientation between the stress tensor σ, the dislocation line l1 and the
Burgers vector b is arbitrary, the Peach-Koehler equation

Fd = (σ · b)× l1 (6.15)

holds.

Equation (6.15) can be derived in a similar way to equation (6.14) by
calculating the energy. If the dislocation line is displaced by l2, the
crystal above the covered area has slipped. The normal vector in this
area is given by the cross product l1 × l2/|l1 × l2|. The stress in this
area is σ · (l1 × l2)/|l1 × l2|, resulting in a force of σ · (l1 × l2). Because
the crystal has slipped by a Burgers vector, the work is

E =
`
σ · (l1 × l2)

´
· b .

Using rules for scalar and vector products, this equation can be re-
written due to symmetry of the stress tensor:

E = (σ · b) · (l1 × l2)

=
`
(σ · b)× l1

´
· l2 .

This energy equals the force on the dislocation, multiplied by l2:

E = Fd · l2 .
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As the energies must agree for arbitrary l2, the Peach-Koehler equation
results:

Fd = (σ · b)× l1 .

Peierls force

We already saw in section 6.2.3 that atomic bonds have to flip for a dislocation
to move. This requires stretching of the bonds and therefore needs energy. The
resulting force fixes the dislocation at its momentary position and has to be
overcome to move it. Thus, if the applied stress is too small, no dislocation
movement is possible and the crystal cannot deform plastically. Figure 6.13
above illustrates this using the sphere model of atoms. This retaining force is
called Peierls force (or Peierls-Nabarro force). It determines the yield strength
(or critical resolved shear stress, see section 6.2.5) of single crystals if their
impurity content is small. In face-centred cubic or hexagonal close-packed
metals, the Peierls stress is about 10−5G (where G is the shear modulus) and
can therefore not explain the strength of engineering alloys. In these, other
obstacles for the movement of dislocations play a role, to be discussed in
section 6.3. In body-centred cubic metals, the Peierls force is larger than in
the close-packed structures, especially at low temperatures, and influences the
yield strength significantly. This will be explained in section 6.3.2.

After the dislocation has moved by half a Burgers vector, the Peierls force
pushes it forwards and moves it to the position of the next energy minimum.
The stored energy is usually dissipated as heat (i. e., as random crystal vibra-
tion) in the crystal. The Peierls force thus acts as a kind of frictional force
and reduces the effective stress that can be used to drive the dislocation to
overcome other obstacles.

Other inner stresses, caused for example by other obstacles (see the next
section), can counteract the external stress τ in a similar way to the Peierls
stress. They can thus also be considered as inner frictional forces or stresses.
The stress τ∗ that is effectively available to move the dislocation is thus τ∗ =
τ −τi. If a certain kind of obstacle is investigated, it is often useful to combine
the contributions of all other obstacles to a single frictional stress τi and to
assume that the dislocation is driven by the effective stress τ∗.

6.3 Overcoming obstacles

Dislocations can be retarded by different kinds of obstacles. We already know
one of these, the Peierls force. Other types, such as precipitates of a sec-
ond phase, grain boundaries, or impurity atoms, will be discussed below in
section 6.4 when we look at strengthening mechanisms. Here we want to un-
derstand in what ways a dislocation can overcome an obstacle. As we will see,
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Fig. 6.23. Deflection of a dislocation line pinned by obstacles (only part of the
dislocation between two obstacles is shown)

it is important whether the dislocation movement is aided by the temperature
or not. The first case is called a thermally activated process, the second an
athermal one.

6.3.1 Athermal processes

Let there be several obstacles in our material with a distance of 2λ between
them (figure 6.23). Consider a dislocation pinned on these obstacles. When
the external stress τ acts on the dislocation, it tries to move on and bows out.
Its shape is a segment of a circle because this covers the greatest area with
the least-most energy to create new length of dislocation line.

The component of the force in the direction of movement is, according to
equation (6.14), F = 2λbτ . Therefore, each obstacle exerts a retaining force
FR with opposite orientation and identical magnitude, for each obstacle takes
half of the force F from two dislocation segments. If T is the line tension of
the dislocation (see equation (6.3)), this force is

FR = 2T sin θ = 2T
λ

R
= Gb2 λ

R
,

where G is the shear modulus, b the Burgers vector, and R the radius of the
dislocation segment. Equalling F and FR yields

τ =
Gb

2λ
sin θ . (6.16)

Here it is crucial that the obstacle cannot bear arbitrarily large forces. If
Fmax is the maximum force the obstacle can bear, the dislocation can detach
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Fig. 6.24. Annihilation of dislocation segments in the Orowan mechanism
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Fig. 6.25. Overcoming an obstacle by cutting of dislocations (after [74])

from the obstacle if FR exceeds Fmax. Therefore, there is a critical value
sin θ = Fmax/Gb2, and sin θ can be considered as dimensionless measure of
the obstacle strength. It may seem contradictory that sin θ takes only a limited
range of values but Fmax does not. This is resolved by realising that at sin θ =
1, the dislocation will have bowed out so far that it becomes a semi-circle,
resulting in an annihilation of neighbouring dislocation segments (figure 6.24).
The dislocation can move on, regardless of the strength of the obstacle. During
this process, small dislocation loops remain around the obstacles. The region
they enclose did thus not slip by a Burgers vector. This process of overcoming
an obstacle is called Orowan mechanism, and the required Orowan stress is

τ =
Gb

2λ
. (6.17)

If Fmax/Gb2 < 1, the strength of the obstacle is not sufficient to retain the
dislocation until the Orowan mechanism starts. In this case, the dislocation
passes through the obstacle, thus cutting it and shearing one part of the
obstacle against the other as shown in figure 6.25. This can only happen if the
obstacle can slip in the same slip system as the surrounding material. This is
always the case when the obstacle is another dislocation. If the obstacle is a
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Fig. 6.26. Obstacles with different energy

particle (for instance, a precipitate), it can slip in the same slip system if it
is coherent. A semi-coherent particle can also slip in the same slip system as
the surrounding material, but the dislocation may have to move to another
slip system by climb or cross slip because the matrix material and the particle
have some, but not all, of the slip systems in common. Incoherent particles
cannot be cut by a dislocation.

In summary, the following parameters are the main factors in determining
the stress needed to overcome obstacles by cutting or the Orowan mechanism:
The strength of the obstacle, the distance between the obstacles, and the elas-
tic stiffness of the material. If we use aluminium as an example (G = 25.4 GPa,
b = 2.86×10−10 m), we immediately see that the obstacles can only be effective
when their distance is significantly smaller than a micrometre (cf. exercise 21).
Obstacles must thus be distributed finely to increase the stress needed to
move a dislocation appreciably. We can also see from this consideration that
materials with a small shear modulus, like magnesium or aluminium, can
never be as strong as materials with high modulus. For instance, precipitation-
hardened5 aluminium alloys (G = 26 500 MPa) have a yield strength Rp of
600 MPa at most. If the same strengthening method is used in nickel-base
alloys (G = 74 500MPa) the yield strength can be as high as 1400 MPa, in
good agreement with the value expected from the shear moduli.

It does not matter for the efficiency of an obstacle whether the energy
of the dislocation is increased or decreased within it (see figure 6.26). In the
first case, energy is needed for the dislocation to penetrate the obstacle i. e.,
the dislocation is stopped in front of the obstacle. In the second case, the
dislocation easily enters the obstacle – releasing some energy as heat –, but
additional energy is required to detach it again.

Screw dislocations can use another mechanism, cross slip, to overcome ob-
stacles (see section 6.2.4). As their slip plane is not fixed, they can evade
to another plane not blocked by the obstacle as illustrated in figure 6.27.
5 In precipitation hardening, finely distributed particles of a second phase are cre-

ated by a special heat treatment. This method will be explained in section 6.4.4.
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Fig. 6.27. Overcoming obstacles by cross slip of a screw dislocation. The resulting
edge dislocations in the cross slipped segment cannot continue to slip in the original
direction because they are oriented inappropriately

Although the external shear stress on this so-called secondary slip plane or
cross slip plane is smaller than on the primary one, moving along this path
can be easier than trying to overcome the obstacle by cutting or the Orowan
mechanism. This is the case if the effective shear stress τ∗ (see section 6.2.9)
on the secondary slip plane is larger than on the primary one due to the ab-
sence of the obstacle force. Because screw dislocations can use this additional
mechanism, they are frequently able to overcome obstacles more easily than
edge dislocations.

In general, it is important to notice that it is not simply the more mo-
bile type of dislocation that determines plastic deformation: If we consider
a dislocation loop with different mobility of the segments as an example, we
see that the more mobile type will at first cover a greater distance, but only
a small amount of slip is caused by this movement. During the process, the
dislocation line reorients itself, increasing the amount of the less mobile type.
Thus, the importance of the more mobile one is reduced (see section 6.2.3
and figure 6.11). Because the majority of the slip has now to be performed
by the less mobile type, it considerably affects the resistance against plastic
deformation.

6.3.2 Thermally activated processes

Aided by thermal energy, dislocations may overcome obstacles even when the
external stress is not sufficient to exert a force that exceeds the strength of the
obstacle. This is called a thermally activated process (appendix C.1 provides
a general introduction to this concept).

Consider a dislocation trying to move through an arrangement of obstacles
as sketched in figure 6.28. We assume that the energy of the dislocation is
larger within the obstacle than far away from it.6 The stress needed to move
6 As explained above, the obstacles are still obstacles if they attract the dislocation

because energy is needed to leave the obstacle. All arguments made here can
easily be converted to this case.
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Fig. 6.28. Critical shear stress for overcoming obstacles by a dislocation. Further
explanations in the text

the dislocation through the obstacle is plotted in the figure. The position of
the dislocation is characterised by a single coordinate x because it moves from
left to right in the figure.

Far away from the obstacle, a frictional stress τi is required to move the
dislocation (see section 6.2.9). In the region of the obstacle, the required stress
increases and then decreases again behind it. If we assume that the effect of
the obstacle is restricted to its vicinity, the required stress increases steeply.
To simplify the calculations, we approximate the resulting stress curve by a
rectangular one with the appropriate height and width. The width d∗ of the
rectangle is then a measure of the width of the obstacle.

A stress of τm has to be exerted to move the dislocation through the obsta-
cle. The work Q done by this stress can be calculated, using equation (6.14)
for the force on a dislocation:

Q = (τm − τi) · 2bλd∗ . (6.18)

We subtracted the frictional stress τi because it does not describe the effect
of the obstacle, but of the material without it. Q is the obstacle energy, the
energy barrier the dislocation has to overcome.

If the effective stress τ∗ is larger than τm−τi, the dislocation can overcome
the obstacle. If it is smaller, a certain amount of energy is missing, given
by ∆E = Q − 2λbd∗τ∗. This can be provided by thermal activation. The
probability P for this is, according to appendix C.1, given by

P ∝ exp
(
−∆E

kT

)
= exp

(
−Q− 2λbd∗τ∗

kT

)
. (6.19)
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Fig. 6.29. Schematic illustration of the tem-
perature dependence of the yield strength of
face-centred and body-centred cubic metals

Here k is Boltzmann’s constant and T the absolute temperature. The quantity
b · 2λd∗ has the unit of a volume und is thus frequently called activation
volume V ∗.

Equation (6.19) states that overcoming obstacles becomes easier, the
higher the temperature is, and the smaller the energy barrier. It is valid for
any kind of obstacle. If kT is larger than the obstacle energy Q, the effect of
the obstacle is negligible.

If we consider the Peierls force from section 6.2.9 as obstacle, it can also be
overcome by thermal activation. This is especially relevant if the Peierls force
is large i. e., when slip is along planes that are not close-packed, for example in
body-centred cubic lattices. For this reason, the yield strength of body-centred
cubic lattices is strongly dependent on the temperature, different from face-
centred cubic metals (figure 6.29). The Peierls stress can reach values of up
to several hundred megapascal.

It may seem contradictory that the Peierls stress is on the one hand
able to determine the yield strength of a metal and can nevertheless
be overcome by thermal activation already at room temperature. The
reason for this is that its activation volume is rather small. The stress
τm needed to athermally overcome the barrier is large, but due to the
small size of the activation volume, the obstacle energy Q is still small
enough to be provided by thermal activation at room temperature.

The stronger dependence of the flow stress on the in body-centred cubic metals
can also be explained by equation (6.19). To see this, we have to take a closer
look at the meaning of the equation. So far, we talked only about the probabil-
ity of the dislocation overcoming the obstacle, but not about the time needed
to do so. Intuitively, it is rather obvious that the probability has to increase
with time, but it is not so obvious how this can be seen from equation (6.19).
The equation has to be interpreted as stating the probability to overcome
the obstacle in a single ‘trial’. Thermal fluctuations cause the dislocation to
vibrate with a characteristic frequency. Each vibration can be considered as
one trial to overcome the obstacle. This explains that with increasing strain
rate ε̇, the available number of trials becomes smaller. The yield strength must
therefore increase with increasing ε̇; this is more pronounced in body-centred
cubic metals. This agrees with experimental observation (see figure 6.29).
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Fig. 6.30. Illustration of the brittle-ductile transition using Mohr’s circle

6.3.3 Ductile-brittle transition

As we saw above, thermal activation is needed to overcome the Peierls barrier
in body-centred cubic metals. This does not only cause strong hardening with
decreasing temperature, it can also lead to a transition between ductile and
brittle behaviour in a rather narrow temperature range. Figure 6.30 shows
the transition between ductile and brittle fracture, using Mohr’s circle. At
elevated temperatures, the material flows plastically before the maximum ten-
sile stress has reached the cleavage strength. At low temperatures, the yield
strength has increased, but the cleavage strength is almost unchanged, so
the material fractures before plastic flow starts. There is a transition regime
between these two regions, the so-called ductile-brittle transition. It is not a
material parameter because it depends on the stress state and the strain rate.
As the equivalent stress, governing the onset of plastic flow (see section 3.3.1),
is independent of the hydrostatic stress state, while brittle fracture depends
on the maximal principal stress, brittle fracture is especially easy if the state
is one of triaxial tension.

6.3.4 Climb

So far, we assumed that the dislocation segment considered stays in its slip
plane. This is not always true as we already saw for the case of a cross-slipping
screw dislocation. We also saw that an edge dislocation cannot by-pass an ob-
stacle in this way. However, they can leave their slip plane by another mech-
anism, the thermally activated climb process. During climb, the dislocation
either incorporates vacancies or emits them, see figure 6.31. The dislocation
thus moves perpendicularly to its slip plane. For this process to be relevant, the
vacancy density and mobility within the crystal must be large. As explained
in appendix C.1, the vacancy density and mobility increase exponentially with
the temperature. Therefore, significant climb can occur only at high temper-
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(a) Initial stage (b) Step 1 (c) Step 2

Fig. 6.31. Climb process of an edge dislocation. By incorporating or emitting va-
cancies, the dislocation line can leave its original slip plane

atures (approximately above 40% of the melting temperature). This process
will be discussed in more detail in section 11.2.2.

6.3.5 Intersection of dislocations

Dislocations are a particularly important type of obstacles for the movement
of other dislocations.

Dislocations oriented in parallel interact and exert forces on each other as
we already learned in section 6.2.7. Repulsive forces hinder the approach of
the dislocations, attractive forces hinder their separation. Both forces impede
dislocation movement.

If the dislocations are not parallel, their movement can nevertheless be
influenced. If one dislocation by-passes the other, they create, depending on
their Burgers vectors, kinks or jogs in the other dislocation [40, 61]. The dif-
ference between kinks and jogs is that kinks are within the slip plane while
jogs leave it. Figure 6.32 shows the effect of a vertically drawn dislocation on
a passing, horizontally drawn one for different configurations, illustrating the
generation of a kink or a jog. It has to be noted that the passing dislocation
will also create a kink or jog in the vertical dislocation, but for clarity this
has not been included in the figure. Kinks and jogs create edge-like segments
in screw dislocations and vice versa. The length of the dislocation grows in
many configurations by one Burgers vector of the other dislocation. Due to
the energy stored in a dislocation, energy has to be provided by the passing
dislocation so that the dislocation is an energy barrier. Additional energy is
needed because of the interaction of the stress fields. Dislocations that are not
parallel to the moving dislocation and act as obstacles are descriptively called
forest dislocation.

The additional edge segments created in a screw dislocation have another
consequence: A jog in a screw dislocation (figure 6.33) can move only in the
original slip plane by incorporating or emitting vacancies, thus reducing the
mobility. This is the reason why screw dislocations are slower than edge dis-
locations at low temperatures [40].
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(a) Cutting of an edge dislocation. Depending on the orientation of the edge dislo-
cation, a kink forms in the cutting dislocation

b

(b) Cutting of a screw dislocation. A jog forms in the cutting dislocation

Fig. 6.32. Cutting of dislocations of various types and orientations (after [40]). The
type and orientation of the moving dislocation is not determined, here. Depending
on its type and orientation, a kink or jog is created in the immobile dislocation

b1

b2
Fig. 6.33. Screw dislocation with a edge-type seg-
ment. The only way to move the edge dislocation
segment in the original slip direction is by incorpo-
rating or emitting vacancies

6.4 Strengthening mechanisms

Plastic deformation of metals is mainly determined by the mobility of dislo-
cations. To design engineering materials with high strength, dislocation move-
ment has to be impeded. In this section, we want to discuss possible mecha-
nisms to do this by different obstacles and to see what amount of strengthening
(or hardening, as it is also called) can be achieved.

6.4.1 Work hardening

As explained above, dislocations are obstacles for other dislocations. The more
dislocations there are in a metal, the higher is its yield strength. Dislocation
sources, like the Frank-Read source or others described in section 6.2.8, create
new dislocations during plastic deformation and serve to increase the disloca-
tion density. This hardens the material, a process called work hardening, strain
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Fig. 6.34. A dislocation crosses a configura-
tion of other dislocations acting as obstacles

hardening, or sometimes strengthening by cold-working. The dislocation den-
sity can increase to a value of 1016 m−2.

Work hardening is the reason why the flow curve of metals increases in
the plastic regime (see chapter 3). If the material is unloaded after plastic
deformation, the stress-strain curve follows a line parallel to the elastic line. If
the load is raised again, the yield strength has increased and the stress-strain
curve follows the same line as on unloading. The strain until the material
starts to neck or fracture is reduced; the material has lost ductility.

The influence of the dislocation density on the strength of a metal can
be estimated: Consider a dislocation line moving through an array of disloca-
tions perpendicular to it as sketched in figure 6.34. Let the distance between
the dislocation obstacles be 2λ. If the dislocations were insurmountable, they
would have to be by-passed with the Orowan mechanism. As they can be cut
instead, the necessary stress is smaller than the Orowan stress. This results
in τcut = kd Gb/2λ, with kd ≈ 0.1 . . . 0.2.

The spacing between the dislocation lines is determined by the dislocation
density %. If we simply assume all dislocations to be parallel and arrayed in a
regular way, each penetration point in a plane perpendicular to the dislocation
occupies an area of 2λ·2λ. The dislocation density is the number of penetration
points per unit area i. e., √% = 1/2λ. Inserting this into the equation given
above, we get

∆σd = kdMGb
√

% (6.20)

as the contribution of the dislocations to the strength of the material. Here
we used the Taylor factor M introduced in section 6.2.6 to convert from shear
to tensile stresses.

The contribution of work hardening can, according to equation (6.20),
amount to several hundred megapascal. If we compare two materials (for in-
stance, a low- and a high-strength steel) that differ strongly in their yield
strength, the absolute contribution of work hardening is similar for both. Rel-
ative to the initial yield strength, the high-strength material thus has a smaller
amount of hardening than the low-strength material. In section 3.2.3, it was
explained that this causes a lower elongation without necking (ductility).

The strength of a material can thus be increased by simply deforming
it plastically. This is used during rolling or wire drawing. Table 6.4 shows
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Table 6.4. Effect of work hardening on the yield strength Rp0.2 and fracture strain
A11.3 [4] (true strain ϕ)

alloy ϕ/% Rp0.2/MPa A11.3/%

Al 99.5 0 20 . . . 55 35
30 90 4
50 130 3

AlMg 3 0 80 17
20 190 4
65 250 2

the increase in strength and the decrease in ductility for different states of
deformation of pure aluminium and an aluminium alloy.

One advantage of work hardening is that it is simple to achieve and is often
a by-product of the manufacturing process, for instance in deep drawing of
steel sheets for car body parts. However, increasing the dislocation density also
decreases the ductility, so work hardening is only suitable for materials with
high ductility. Another disadvantage is that the strengthening is lost at high
temperatures (for instance during welding) due to recovery (see section 6.2.8).

6.4.2 Grain boundary strengthening

Grain boundaries are barriers for the movement of dislocations. As the crystal
orientation in the neighbouring grain is different, a dislocation cannot simply
enter it. The stress field of the dislocation may initiate dislocation movement
in the neighbouring grain, but if the slip systems are less favourably oriented
there, a larger stress is needed to move dislocations than in the first grain.

If a slip system is activated in a crystal, several dislocations are moving
on one slip plane in the same direction and can pile up at a grain boundary.
Thus it is plausible, as will be explained below, that the strength of metals
increases with decreasing grain size. This strengthening mechanism is called
grain boundary strengthening or strengthening by reduction of the grain size.

The amount of grain boundary strengthening can be estimated using some
simplifying assumptions. Consider a system of m dislocations, piled up at
a grain boundary and being numbered starting at the grain boundary (see
figure 6.35). This configuration may have been created by a dislocation source
within the crystal that created several dislocations on the same slip plane.
On each of these dislocations, the external stress τ acts to push it forwards,
reduced by a frictional stress τi in the lattice (see section 6.2.9), resulting in
an effective stress τ∗. In addition, there is a forward-pushing stress on each
dislocation, caused by the interaction with the dislocations behind it. The
forward acting stress τf on the jth dislocation is thus



www.manaraa.com

6.4 Strengthening mechanisms 201

1234
5

¿

¿

Fig. 6.35. Pile-up of dislocations at a grain
boundary

τ
(j)
f = τ∗ +

m∑
k=j+1

τ (jk) , (6.21)

where τ (jk) is the stress that dislocation k exerts on dislocation j. For the
backward-pushing stress τb we find analogously

τ
(j)
b =

j−1∑
k=1

τ (jk) . (6.22)

Two dislocations exert the same, oppositely oriented stress on each other:
τ (jk) = −τ (kj). Another stress acts on the first dislocation at the grain bound-
ary, namely the obstacle stress −τ ′ created by the grain boundary that causes
the pile-up. In equilibrium, forward- and backward-pushing stresses must be
the same on each dislocation: τ

(j)
f + τ

(j)
b = 0. Summing over all dislocations

results in
m∑

j=1

τ
(j)
f = −

m∑
j=1

τ
(j)
b ,

m∑
j=1

(
τ∗ +

m∑
k=j+1

τ (jk)

)
= τ ′ −

m∑
j=1

j−1∑
k=1

τ (jk)

= τ ′ −
m∑

j=1

m∑
k=j+1

τ (kj) .

Using the condition τ (jk) = −τ (kj), we can eliminate both double sums to get

mτ∗ = τ ′ . (6.23)

The number m of dislocations piled up in a grain is on the one hand pro-
portional to the diameter of the grain, on the other it is also proportional to
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the stress τ∗, for the larger the stress, the smaller is the equilibrium distance
between the dislocations.7 Introducing a proportionality constant k, we find
from equation (6.23)

τ ′ = k(τ∗)2d .

The retarding stress τ ′ cannot exceed a critical value τc. If the applied shear
stress is larger than this, a slip system in the neighbouring grain will be
activated, which then starts to flow. If τ ′ = τc, the external stress takes the
value

τ = τi +
√

τc√
kd

. (6.24)

Here we again separated the contribution of the frictional stress. Grain bound-
ary strengthening thus contributes to the material’s strength with an amount
that is proportional to the inverse of the square root of the grain size. If we
convert from the shear stress on the slip plane to the tensile stress by using the
Taylor factor (see section 6.2.6) and introduce a new proportionality constant
kHP, the amount of grain boundary strengthening is

∆σgbs =
kHP√

d
. (6.25)

This is the Hall-Petch equation, containing the Hall-Petch constant kHP. Its
value is 3.5 N/mm3/2 for copper, 12.6 N/mm3/2 for titanium, and 22 N/mm3/2

for a low-alloy steel [55]. Figure 6.36 shows the dependence of the yield
strength of a low-alloy steel on the grain size.

Strengthening by grain boundaries has another cause, already discussed
in section 6.2.6: During plastic deformation of a polycrystal, neighbouring
grains have to deform so that neither material overlaps nor gaps are created.
Therefore, more slip systems have to be activated near the grain boundary
to enable compatible deformation of the grains. Generally, some of these are
more difficult to activate and thus require a higher stress. This effect is already
included in the measured values of the Hall-Petch constant.

Grain boundary strengthening has the advantage that the ductility of the
material does not decrease with decreasing grain size and increasing strength.
One disadvantage is that, at elevated temperatures, grain boundaries soften
and constitute a weak point of the material. This will be discussed further
in chapter 11. Fine-grained materials are thus advantageous only in the low-
temperature regime.

In a material cooled from the melt, the grain size is determined mainly
by the cooling rate. To produce a fine-grained material, the cooling rate must
be large, but this is technically difficult to achieve. Fine-grained materials are
therefore usually produced in another way, by recrystallisation.
7 This argument shows that m increases with τ∗. It is not so easy to show that the

dependence is actually a proportionality.
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Fig. 6.36. Dependence of the lower yield strength on the grain size in a low-alloy
steel at room temperature (after [68])

Here the material is heavily deformed at first, increasing the dislocation
density to values of the magnitude 1015 m−2 (see section 6.4.1). Due to the
elastic distortion around the dislocations, the amount of stored elastic strain
energy in the crystal is large. If the temperature is raised, the material recovers
(see section 6.2.8) by re-ordering the dislocations and annihilating some of
them, thus slightly reducing the dislocation density and the stored energy.

Because of the large amount of stored elastic energy, the deformed state is
thermodynamically unstable. Favourably oriented regions, for instance near
grain boundaries or inclusions, serve as starting points or nuclei for the forma-
tion of new, undeformed grains. During recrystallisation, these nuclei grow by
moving their boundaries into the deformed material. The newly created grain
now has a low dislocation density and thus a smaller amount of stored elastic
energy. As the boundary between the nucleus and the already existing grains
is, like every grain boundary, a region of high energy, growing can only occur
if the increase in grain boundary energy is compensated by the decrease of the
stored elastic strain energy from the decrease of the dislocation density. The
higher the dislocation density, the easier the nuclei can grow. A large initial
dislocation density finally produces a fine-grained structure, for the rate of
activation of grains is large.

To produce fine-grained metals, they are at first heavily deformed (by
rolling, for example) and are then heat treated in a way leading to recrys-
tallisation. By controlling the amount of deformation and the heat treatment
temperature, the resulting grain size can be adjusted rather precisely.

6.4.3 Solid solution hardening

Another important way of strengthening metals is to alloy them with elements
that are dissolved in the crystal lattice and form a solid solution. Such atoms
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(a) Substitutional solid solution (b) Interstitial solid solution

Fig. 6.37. Different types of solid solutions

(a) Smaller atom (b) Larger atom

Fig. 6.38. Different sizes of dissolved atoms in solid solutions

elastically distort the crystal and can thus interact with the stress field of a
dislocation and impede its movement.

Atoms in solid solutions can be situated on two different kinds of lattice
sites: They can either sit at the same position as the original atoms, thus
substituting one atom by another (substitutional solid solution), or they can
be placed in interlattice positions between the original atoms, forming an
interstitial solid solution. Figure 6.37 sketches both cases. An interstitial solid
solution can only form when the dissolved atoms are much smaller than those
of the host atoms. Carbon in iron provides an example.

Substitutional atoms act as obstacles for dislocation movement by different
mechanisms. Most important is the elastic distortion of the lattice (figure 6.38)
that interacts with the distortion around the dislocation. If, for example, the
dissolved atoms are larger than the host atoms, they produce compressive
stresses in their vicinity. An edge dislocation trying to enter this region with
its own compressive region will thus be repelled and needs additional energy
to move on. If the dislocation approaches the dissolved atom with its tensile re-
gion, it will be attracted, and thus it becomes difficult to detach the dislocation
from the solid solution atom, pinning the dislocation. Smaller substitutional
atoms behave in the opposite way.

A further interaction between the dislocation and the solid solution atom
is due to the different strength of the atomic bond between the dissolved
atom and its neighbours, resulting in a locally changed elastic modulus in the
vicinity of the solid solution atom. The line tension of the dislocation thus
either increases or decreases when it approaches the atom, causing another
obstacle effect known as modulus interaction.

Short-range order interaction [40] (sometimes called configurational inter-
action or Fisher effect) can also occur. If, for example, the binding energy
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Fig. 6.39. Short-range order interaction during dislocation slip. If it is energetically
unfavourable for the grey-coloured atoms to be on adjacent lattice sites, the slip
shown is hampered

between host atom A and dissolved atom B is larger than that between B
atoms, it is energetically favourable to surround a B atom with A atoms.
If this short-range order is disturbed by slip, resulting in two neighbouring
B atoms, additional energy is needed (see figure 6.39). Dislocation movement
is thus impeded.

Experimentally, the following relation between the contribution to strength-
ening ∆σsss and the concentration c of the impurity atoms is found:

∆σsss ∝ cn . (6.26)

The exponent n takes values of about 0.5. This is plausible because the spacing
of the obstacles decreases approximately with

√
c as we will see in section 6.4.4

(equation (6.28)).8
From what has been said so far, it might be presumed that it is best to

choose atoms with strongly differing radii as substitutional atoms to achieve
a large strengthening contribution. This, however, is only partly true because
the solubility of atoms decreases with increasing difference in the radii. For
instance, 100% nickel can be dissolved in copper because the radius difference
is only 2.7%, but copper can only dissolve 10% aluminium with a radius
difference of 12%. In general, a difference in the radii of less than about 15%
is required for good solubility. The solubility is also larger if the elements are
chemically similar and have the same crystal structure.

A different case is the interstitial solid solution, for instance of carbon or
nitrogen in steel. Here a large difference in the radii is required because it
enables the dissolved atoms to sit in an interstitial position.

Substitutional solid solution strengthening has the advantage of being
rather temperature insensitive. With increasing temperate, for instance dur-
ing welding, the solubility of the atoms does not decrease, but increases, so
strengthening at room temperature is not impaired. As long as the dissolved
atoms diffuse only slowly through the crystal and thus cannot move along
8 There, the volume fraction of precipitates fV is used, which is equivalent to the

concentration c of the solid solution.
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Table 6.5. Influence of solid solution strengthening on the yield strength Rp0.2 and
the fracture strain A11.3 in the annealed condition [18]. The numbers in the material
names state the approximate content of the particular alloying element in percent

alloy Rp0.2/MPa A11.3/%

Al 99.5 20 . . . 55 35
AlMg 1.5 45 20
AlMg 2.5 60 17
AlMg 3 80 17

with the dislocations, ∆σsss will be significant even at elevated temperatures.
Nickel-base superalloys strengthened with tungsten, molybdenum, and rhe-
nium are an example.

Another advantage of solid solution strengthened and thus single-phase
alloys is their good corrosion resistance. This is due to the absence of localised
galvanic cells. Localised galvanic cells are formed by two contacting phases of
different chemical composition with a different position in the electrochemical
series i. e., one of them being less noble than the other. If the material is
attacked by a corrosive medium, the less noble metal can be dissolved.

However, it has to be noted here that some solid solution strengthened
alloys are supersaturated at room temperature. This is the case, for
example, for the alloy AlMg 4.5Mn. If the material is cooled too slowly
from elevated temperatures, precipitation reactions can occur (see sec-
tion 6.4.4). If the precipitated particles are semi-coherent or incoherent,
as in the case above, and thus have a large nucleation barrier, heteroge-
neous nucleation at grain boundaries occurs preferredly. This frequently
leads to embrittlement and larger sensitivity to intercrystalline corro-
sion.

Table 6.5 shows the effect of solid solution strengthening for aluminium. If we
compare it to table 6.4, we see the favourable combination of strength and
ductility.

One major disadvantage of solid solution strengthening is that those atoms
that would yield a large effect due to their large radius difference have only
a limited solubility (see above). Thus, this method can usually achieve only
a moderate strengthening. The same is usually the case for interstitial solid
solutions, for relatively large interstitial atoms possess a limited solubility, also.
One famous exception is carbon in ferritic steels. Because the face-centred
cubic γ phase can dissolve several percents of carbon at high temperature, it
is possible to ‘freeze in’ these large contents when cooling to the body-centred
cubic α phase, although the elastic lattice distortion is large (hardening, see
also section 6.4.5).
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Fig. 6.40. Effect of solid solution atoms on
stress-strain curves

Yield point phenomenon and strain ageing

As already discussed, the interaction between dissolved atoms and a disloca-
tion can cause pinning of the dislocation. Because the dissolved atoms can
move through the lattice by diffusion, they can pin dislocations even if these
do not move. This is especially so for interstitial atoms, for they have a large
diffusivity. This is the cause of the apparent yield point of some metals and
for the so-called Portevin-Le-Châtelier effect (plc) as we will see now.

If the diffusivity of the dissolved atoms is negligible, as assumed in the
previous section, dislocations can be pinned only when they move due to
external stresses. In this case, the presence of the dissolved atoms causes
strengthening (figure 6.40).

If we increase the diffusivity (for example by raising the temperature), we
encounter the yield point phenomenon i. e., we find an upper and a lower yield
strength (see section 3.2). Solid solution atoms diffuse into the distorted re-
gions near the dislocations line while the material is stress-free. If external
stress is applied, the dislocation has to be ‘teared off’ its pinning points. The
stress required for this defines the upper yield strength ReH of the material.
After the dislocation has left its pinning points, it is more mobile than be-
fore, and the yield strength reduces (lower yield strength ReL). Deformation
localises in this region, with only a few grains participating. Dislocations pile
up at the grain boundaries, thus increasing the stress in the neighbouring
grain, allowing dislocations there to become mobile as well. Narrow bands of
localised deformation, so-called Lüders bands, form within the material. This
alternation between local hardening by dislocation pile-up and removal of
this deformation obstacle by tearing off dislocations in the neighbouring grain
causes a strongly serrated flow curve. Apart from these fluctuations, there is
no hardening. Only after the Lüders bands have spread throughout the mate-
rial and all dislocations are removed from their pinning points does the yield
strength increase beyond the lower yield strength by work hardening.

If the load is removed and the material stored for some time, the dissolved
atoms diffuse again to the dislocations and thus re-anchor them. If the material
is deformed again, an upper and lower yield strength are again encountered.
This is called strain ageing. The temperature and time required for this ageing
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Fig. 6.41. Schematic illustration of the
dependence of the stress-strain curve on
the temperature for steel

process depend on the diffusivity of the dissolved atoms and thus on the alloy.
In many steels, strain ageing can occur at room temperature.

The yield point phenomenon is often not desired because it causes an inho-
mogeneous plastic deformation. In deep drawing of metal sheets for car bodies,
for instance, the surface of the sheets becomes rough (so-called ‘orange peel’).
Counter measures are therefore needed. Steel sheets, for instance, are usually
temper rolled before the deep drawing process to tear off the dislocations by
minor plastic deformation.

For the case of steels, we want to estimate typical diffusion path lengths
of carbon in the iron matrix. The mean diffusion distance is x ≈

√
Dt,

where t is the time available and D is the diffusion coefficient or dif-
fusivity. The diffusion coefficient can be calculated from the Arrhenius
law:

D = D0 exp

„
− Q

RT

«
= 0.2m2/s · exp

„
−103 kJ/mol

RT

«
,

where Q is the activation energy of diffusion and D0 is the diffusion
constant. At room temperature, the diffusion coefficient is D ≈ 2 ×
10−19 m2/s. The diffusion distance covered in 24 hours is thus 130 nm. If
the dislocation density has a typical value of 1012 m−2 to 1014 m−2, the
mean distance between the dislocations is, according to section 6.4.1,
100 nm to 1000 nm. The atoms can thus easily travel to the dislocations
within a day.

If the diffusivity is increased further (by further heating), the diffusion speed
of the atoms becomes so large that they can move to a dislocation as soon
as it stops.9 Tearing-off and re-pinning of the dislocation alternate, causing
a serrated flow curve (figure 6.41), the Portevin-Le-Châtelier effect. Another
consequence of this effect is that when the strain rate is increased, the dissolved
atoms may not be fast enough anymore to catch up with the dislocation and
9 Dislocations usually travel quickly for a certain distance and then pause for some

time.
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pin it. In this case, the yield strength of the material becomes smaller when
the strain rate increases, in contrast to the usual behaviour (see section 6.3.2),
and the serration of the flow curve vanishes.

If the diffusivity (or the temperature) is raised even further, the speed of
the dissolved atoms is so high that they simply accompany the dislocation
during its movement. In this case, there is neither an apparent yield point nor
serrated flow.

6.4.4 Particle strengthening

Many alloys comprise not only one phase, but several. Among these are pre-
cipitation hardened and dispersion strengthened materials. They contain fine
particles of the second phase with sizes far below a micrometre. The particles
are thus strong obstacles for dislocation movement (see section 6.3.1), result-
ing in high-strength materials. These materials have to be distinguished from
metals with a coarse two-phase microstructure with large spacing between the
particles and, consequently, a small Orowan stress. Nevertheless, significant
strengthening can also occur in this case. Both classes of materials will now
be explained. Metals can also be strengthened by adding fibres; this will be
covered in chapter 9.

Coarse two-phase materials

Coarse particles of a second phase influence all bulk properties of a material.
If, for example, Young’s modulus of the second phase is larger than that of
the matrix, load will be transferred from the matrix to the particle if the
material is stressed elastically, and the stiffness increases. In the context of
fibre- and plate-shaped particles this will be discussed further in chapter 9.
The amount of load transfer depends strongly on the shape of the particles
and their arrangement.

Other physical properties behave similarly to Young’s modulus. If, for
example, copper is used to dissipate heat from a ceramic structure, the co-
efficients of thermal expansion of the copper alloy and the ceramic should
not differ too much to reduce thermal stresses at the interface. Adding tung-
sten particles to copper reduces its coefficient of thermal expansion so that it
becomes closer to that of the ceramic.

The wear resistance of a material can also be improved by adding parti-
cles of a second phase. If the particles are hard, the softer matrix material
will wear off first, resulting in the hard particles sticking out of the surface
and then determining the wear properties. This method is used, for example,
in aluminium cylinder liners in combustion engines whose wear resistance is
improved by silicon precipitates, or in cast iron (figure 6.42).

Coarse particles also influence the plastic properties. If their Young’s mod-
ulus is larger than that of the matrix, load transfer reduces the stress in the
matrix, increasing its yield strength. For this to be possible, the strength of
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Fig. 6.42. Two-phase microstructure of grey cast iron. Graphite grains are embed-
ded in the light ferritic phase

the particles must be larger than that of the matrix. In this case, there are
further strengthening effects, discussed in the following.

To discuss these effects in detail, we consider the example of a tensile
load on a matrix material that is strengthened by spherical particles arrayed
regularly (for instance, in a cubic structure). If the volume fraction of the
particles is not too large, it is possible to find a deformation path at 45° to
the external load that does not cut through any of the particles. If the matrix
were perfectly plastic, it could deform along this path, and the strength would
not increase. If, however, the matrix hardens, hardening is increased compared
to the unreinforced material because plastic deformation is restricted to parts
of the matrix, resulting in larger strains there. This effect does therefore not
increase the yield strength, but the amount of hardening.

If the particles are elongated, for instance in the shape of fibres or small
plates, finding a deformation path at 45° to the external load may be impossi-
ble even at small volume fractions. In this case, a more intricate deformation
pattern has to evolve. This obstruction of the deformation causes a marked
strengthening effect with load transfer to the particles. Accordingly, elongated
particles are especially efficient as long as their strength is high. This will be
discussed in detail in chapter 9.

Coarse particles of a second phase embedded in a matrix of the first phase
can also contribute to strengthening by their interaction with dislocations.
Although they can be easily by-passed by the Orowan mechanism, dislocation
loops around the particles are created, thus increasing the dislocation density
and leading to more work hardening. This effect is used in manufacturing
deep-drawn car body parts from dual-phase steels that contain martensitic
islands in a matrix of ferrite (see also section 6.4.5). Due to their small initial
yield strength but large amount of work hardening, these materials are easy to
deform and nevertheless exhibit high strength after deformation has finished.

Although coarse second-phase particles do not strengthen a material as
efficiently as fine-grained particles, they offer a multitude of ways to influence
material properties.
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Fig. 6.43. Calculation of the average spacing of randomly distributed particles
within one arbitrary plane. The presented example incorporates N = 100 particles
with a radius of r = 0.22 µm in a cube with edge length 2a = 4 µm (fV = 0.07).
Using equation (6.27) yields an average spacing of 2λ = 1.21 µm

Strengthening by fine particles

Small particles of a second phase, evenly distributed in the grains of the first
phase, form a strong barrier to dislocation motion. This was previously dis-
cussed in section 6.3, and we saw there that there are two possible ways to
overcome such obstacles, the Orowan mechanism and cutting of the particles.
The mechanism actually occurring depends on the strength of the obstacles
and on their distance. This strengthening mechanism is frequently called pre-
cipitation hardening, because the particles are usually created by a precipita-
tion process, described below.

The effect of second phase particles not only depends on their radius r, but
also on the number of the particles (measured as their volume fraction fV) and
their mean spacing 2λ on an arbitrarily chosen slip plane. These three quanti-
ties are not independent because, if the volume fraction is kept constant, the
spacing of the particles increases when we increase their radius. To calculate
the relation between them, we consider a cube with an edge length of 2a as
shown in figure 6.43. Into this cube, we insert N particles with radius r. We
want to calculate the mean distance 2λ between those particles intersecting
the x1-x2-plane. Each sphere with a centre coordinate x3 between −r and
r intersects the plane, so the probability that a randomly positioned sphere
does so is 2r/2a. On average, there thus are N · 2r/2a spheres in the plane.
The number N of spheres can be calculated from their volume fraction

fV = N
4πr3

3(2a)3
.

The mean area (2λ)2 per sphere on the plane is given by the area (2a)2 of the
plane divided by the number of spheres intersecting it, N · 2r/2a, yielding
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Fig. 6.44. Formation of an anti-phase boundary during slip of a dislocation through
an ordered lattice structure containing two elements

(2λ)2 =
(2a)2

N · 2r/2a
=

1
fV

(2a)34πr3/3
2r(2a)3

=
2πr2/3

fV
≈ 2r2

fV
. (6.27)

Thus, the mean spacing 2λ of the particles is

2λ ≈
√

2
fV

r . (6.28)

The particles act as obstacles in a similar way to the solid solution atoms
discussed in section 6.4.3. They elastically distort the crystal and thus interact
with the dislocations, and they also change the line tension of a dislocation, for
the elastic stiffness of the particle is usually different from that of the matrix.
If the dislocation cuts through the particle, one part of the particle is sheared
relative to the other. This increases the surface of the particle (cf. figure 6.25
on page 191). The additional surface energy has to be provided by the ex-
ternal work and thus raises the force needed to move the dislocation. If the
particles have an ordered lattice structure containing more than one element
(a superlattice), this order is disrupted by the passing dislocation (figure 6.44),
forming a so-called anti-phase boundary (apb). The new configuration of the
atoms has a higher energy than the old one.

It is difficult to quantitatively estimate these effects. Approximately, it
can be assumed that the force F exerted by the obstacles increases with the
particle radius as F ∝ r

3/2.
Because the force on a dislocation is, according to equation (6.14), F =

2λbτ , the strengthening contribution of the particles is

∆τps =
F

b

1
2λ

=
F

b

1
r

√
fV

2
= kps

√
fVr , (6.29)

if we use the relation F ∝ r
3/2 and introduce the constant kps. The effect of

particle strengthening thus increases with the particle radius and the volume
fraction.

This relation is valid only in the case that the particles are cut by the
dislocations. With increasing particle radius, the force required for cutting
the particles increases. On the other hand, if the volume fraction is kept fixed
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at fV, the spacing of the particles grows until the Orowan mechanism for
overcoming the obstacles becomes easier because here the force decreases with
increasing particle distance. According to equation (6.17), this contribution is

∆τps′ =
Gb

2λ
= kps′

√
fV

r
. (6.30)

Consequently, large radii are disadvantageous because the particles are over-
come by the Orowan mechanism as the particle distance increases.

The total strengthening contribution of coherent or semi-coherent particles
is the minimum of both contributions because the easier mechanism will be
used by the dislocation. If we keep the volume fraction of the particles constant,
the result is a curve that increases proportionally to the square root of the
particle radius and reaches a maximum beyond which the curve drops again
(figure 6.45). The particle radius is optimal at the intersection of the two
curves i. e., the contribution to strengthening is maximised here. In general,
this radius is between 10 nm and 100 nm; the particles have to be small to
optimise strengthening. Since the particle size can be adjusted by the process
of ageing as described below, the material state is often called underaged when
particles are smaller than the optimum and overaged when they are larger.

In practice, it is usually better to choose particle radii slightly above the
optimum value. If the radii are at or below the optimum, particles will be
overcome by cutting. Continual cutting processes can destroy the particles,
producing locally softened regions where deformation concentrates. This is
especially problematic under cyclic loads and can cause a strong reduction of
the life time of a component (see chapter 10).

Table 6.6 summarises the strength of some particle-strengthened alu-
minium alloys.

Precipitation hardening

Strengthening of materials by fine particles is frequently obtained by precip-
itation hardening. This process will now be explained, using the example of
the alloy system aluminium-copper.
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Table 6.6. Effect of particle strengthening on yield strength Rp0.2 and fracture
strain A of aluminium alloys after en 485. The specified values are minimum values
for sheets with a thickness of more than 12.5mm, according to the standard. The
state remarks describe the heat treatment

alloy state Rp0.2/MPa A/%

Al 99.5 O, annealed 20 . . . 55 35

AlSi 1MgMn O, annealed ≤ 85 16
T4, naturally aged 110 13
T61, artificially aged 200 12
T6, artificially aged 240 8

AlCu 4MgSi O, annealed ≤ 145 12
T4, naturally aged 250 12

AlCu 4Mg1 O, annealed ≤ 140 11
T3, naturally aged 290 11

AlCu 4 SiMn O, annealed ≤ 140 10
T4, naturally aged 250 10
T6, naturally aged 400 6
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Fig. 6.46. Precipitation hardening of an aluminium-copper alloy

Figure 6.46(a) shows part of the phase diagram of the Al-Cu system. One
prerequisite for precipitation hardening is the existence of a two-phase region
where the matrix phase (in the example, aluminium with copper in solid
solution) is in equilibrium with the precipitation phase (a copper-rich phase
in the example), a so-called miscibility gap (see section C.3).

To create second-phase particles that strengthen the material significantly,
their radius must be near the optimum as discussed above, so the particles
must be sufficiently small and also be evenly distributed. This requires a pre-
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cipitation reaction in the solid state since particle coarsening rates are too high
in liquids. Such a reaction is possible if the solubility of the second element
(copper in the example) decreases with decreasing temperature. If, for exam-
ple, we heat an alloy with a copper content of 3.5 wt-% to a temperature of
about 550℃ (state 1○) and keep it for a sufficiently long time at this tempera-
ture, all copper will be dissolved because a single-phase state is in equilibrium
at this temperature. This step is therefore called solution heat treatment or
solutionising. If we quench the system sufficiently fast (state 2○), time is not
sufficient to precipitate the second phase. The system is still single-phase, but
oversaturated with copper. A slight warming of the system (to temperatures
of about 150℃, state 3○), often referred to as artificial ageing, raises the diffu-
sivity of the copper atoms sufficiently so that they can form a second phase in
relatively short time (usually a few hours). Figure 6.46(b) sketches a possible
heat treatment. Because of the ageing step required to produce precipitation
hardened alloys, they are frequently also called age hardened.

In some alloys, for example Al-Cu-Mg alloys, this final step is not necessary
because the diffusivity of the atoms is sufficient already at room temperature.
The particle size is in this case usually below the optimum and cannot be
adjusted precisely. The advantage of this so-called natural ageing is that one
step in the heat treatment can be dispensed with.

Because a fine distribution of the particles is required for particle strength-
ening, it is best if a large number of precipitates can form. Therefore, a large
number of initial nuclei of the second phase are required. An initial nucleus,
formed by random fluctuations, will be stable if its further growth will decrease
its energy10. Two effects are crucial for this: On the one hand, precipitating
the particle decreases the energy because during quenching the system has
moved into the miscibility gap (see section C.3) and is oversaturated. This
gain in energy is proportional to the volume of the particle. On the other
hand, energy has to be expended to create the energetically costly interface
between particle and surrounding matrix. The total change ∆Q in energy is
thus

∆Q =
4
3
πr3QV + 4πr2γ , (6.31)

where QV is the specific energy gain due to decomposition of the oversaturated
phase in two phases, and γ is the specific interface energy of the boundary.
For an oversaturated phase, QV < 0. Figure 6.47 shows how ∆Q depends
on the radius r of the nucleus. ∆Q is maximal at a critical radius r∗. If a
nucleus with a radius of r′ forms by random fluctuations, it will grow if further
growth reduces the energy i. e., if r′ > r∗. If we differentiate equation (6.31)
and set the derivative equal to zero, the critical radius can be calculated as
r∗ = −2γ/QV. Therefore, the larger r∗, the less probable is the formation of
a growing nucleus and the fewer nuclei will form in the material.
10 To be more precise, its free enthalpy, see appendix C.2.
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Fig. 6.47. Dependence of the energy gain ∆Q on the particle radius r

Precipitation hardening is therefore most efficient if the nucleation barrier
is small. As we saw, the energy of the interface between particle and matrix
is crucial for this. If it, and thus the nucleation barrier, is large, the rate of
nucleation is small, and few particles are created in any time interval. Thus,
there is ample time for the particles to grow before the oversaturation is re-
lieved. Accordingly, the precipitates are rather large. Therefore, alloys forming
incoherent particles with a large value of the interface energy are not suitable
for precipitation hardening. This is the case in Al-Mg alloys. Other aluminium
alloys, like Al-Cu, Al-Mg-Si, and Al-Zn-Mg form coherent particles with low
interface energy and can be precipitation hardened.

The energy difference QV also plays an important role in determining the
precipitation process. Its absolute value becomes larger with increasing over-
saturation of the solid solution. If it is small, for example when the temper-
ature is only slightly below the limiting temperature between the two-phase
and the single-phase region, the nucleation barrier also becomes large and, as
before, large precipitates form. Therefore, it might seem that ageing should be
performed at low temperatures. However, in this case diffusion rates are low,
and complete precipitation of the second phase and particle growth to the
optimum size cannot be achieved within a realistic time-scale. This explains
why natural ageing of aluminium alloys does not lead to the same strength
levels as artificial ageing (see table 6.6).

Frequently, the solubility of the second element in the matrix phase cannot
be neglected so that some of these atoms are dissolved in the matrix and
increase the strength additionally by solid solution hardening.

The main advantage of precipitation hardening is that a large strength-
ening effect can be achieved. One disadvantage is that the heat treatment is
rather complex and has to be fine-tuned and controlled precisely to adjust the
desired particle radius. Furthermore, precipitation-hardened alloys are sensi-
tive to high temperatures. If they are locally overheated, for instance by weld-
ing, the precipitates may coarsen or even dissolve. After re-precipitation, the
strength near the weld may be large. Residual stresses produced on cooling
may then be sufficient to cause cracks in the material. Precipitation-hardened
alloys are thus less weldable than solid solution strengthened alloys.
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Fig. 6.48. Fracture surface of an austenitic
chrome-nickel steel X 5CrNi 18-10 (en number
1.4301) caused by intercrystalline corrosion

A further problem is connected to corrosion. If a large number of particles
have precipitated on the grain boundaries, localised galvanic elements can
form (see page 206) and cause intercrystalline corrosion. If the precipitates are
less noble than the matrix, they are attacked. This is especially dangerous if
they completely cover the grain boundaries. If the precipitates are more noble
than the matrix, oxidation or corrosion of the matrix material is accelerated
in their vicinity and the material also dissolves near the grain boundaries.

A similar effect is observed in stainless steels. At chromium contents of
more than about 13%, steel becomes corrosion-resistant in weakly corrosive
media because a passivating chromium oxide (Cr2O3) layer separates the reac-
tion partners. If a steel is alloyed with a chromium content slightly above this
value, precipitation of chromium carbides can reduce the chromium content
in the vicinity of the precipitates below the required value, and the matrix
becomes sensitive to corrosion. As long as these chromium-depleted regions do
not overlap, this is uncritical, for corrosion cannot destroy the whole material.
At grain boundaries, however, it is more probable that these regions overlap,
for two reasons: On the one hand, chromium carbide forms preferentially at
the grain boundaries due to a reduced nucleation barrier; on the other hand
diffusion is faster there, increasing the size of the depleted region compared
to the inside of the grain. Both effects increase the corrosion-sensitivity of the
areas adjacent to the grain boundaries and can lead to intercrystalline cor-
rosion. A steel with such corrosion-sensitive grain boundary regions is called
sensitised. Figure 6.48 shows a fracture surface resulting from such a corrosion
process.

dispersion strengthening

Precipitation-hardened alloys can be very strong, but their service tempera-
ture is limited. For example, long-time application of precipitation-hardened
aluminium alloys at temperatures above 200℃ is impossible due to exces-
sive coarsening of the precipitates. To use high-strength materials at high
temperatures, another method of particle strengthening can be achieved by
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Fig. 6.49. Micrograph of an aluminium reinforced with aluminium-oxide parti-
cles [124]

introducing incoherent particles into the matrix. This method is called dis-
persion hardening because particles are distributed in the matrix similar to a
dispersion. Suitable dispersoids should be thermodynamically stable even at
high temperatures and contain at least one element that is not soluble in the
matrix, thus avoiding coarsening of the particles. One example is aluminium
containing aluminium oxide particles (Al2O3), inserted by powder metallurgi-
cal means (figure 6.49).

One advantage of dispersion strengthened alloys is their high temperature
resistance. Furthermore, particles cannot be overcome by cutting because cut-
ting is only possible in coherent or semi-coherent particles. Theoretically, very
high strength levels can be achieved at very small particle radii. In practice,
however, it is very difficult to distribute such fine particles as evenly as nature
does when precipitates form. Another disadvantage of dispersion strengthen-
ing is that distributing the particles in the matrix is a complex and expensive
process.

6.4.5 Hardening of steels

Steels are strengthened by a particular mechanism that is discussed in this
section. This mechanism frequently is called hardening without further speci-
fication, in contrast to e. g., work hardening.

Iron can exist in three different phases: The body-centred ferritic α phase,
the face-centred cubic austenitic γ phase and also the body-centred cubic
δ phase that is completely irrelevant for our discussion.

Pure iron has a phase transformation between the α and the γ phase at a
temperature of 912℃. If iron is cooled sufficiently slowly from above this tem-
perature, the face-centred cubic phase transforms to the body-centred one.
The phase transformation is diffusive, for it proceeds by atoms exchanging
their places and forming nuclei of the α phase which then grow by incorporat-
ing more atoms from the γ phase.
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Fig. 6.50. Section of the phase diagram iron-carbon

Two opposing effects are involved in this process: The driving force for the
transformation becomes larger when the temperature decreases. This driving
force is the energy difference between the two phases11 because the α phase
has a lower energy than the γ phase below the transformation temperature
(see also page 215). The more the γ phase is undercooled, the greater the
driving force for the transformation.

On the other hand, the diffusivity of the atoms becomes exponentially
smaller when the temperature is reduced. If the material is undercooled
strongly, it becomes more and more difficult for the atoms to move to their
new positions. The transformation speed is determined by these two opposing
effects. It has a maximum at a temperature of about 700℃ (figure 6.51) and
strongly decreases with decreasing temperature. If we were to undercool an
iron crystal abruptly (with a cooling rate of about 105 K/s) from the γ phase
to room temperature, the γ phase would be frozen in a metastable state be-
cause no diffusion is possible. The energy difference to the α phase, which is
thermodynamically stable, would, however, be huge.

In practice, it is not possible to undercool an iron crystal in such a way.
Instead of the diffusive phase transformation, a diffusion-less transformation,
also known as martensitic transformation, takes place, without exchange of
atomic positions. Instead, the atoms only slightly rearrange themselves to
11 More precisely, the difference in free enthalpy, see appendix C.2.
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Fig. 6.52. During the martensitic transformation, the face-centred cubic crystal is
compressed in one direction and elongated in the others

produce the favourable body-centred cubic structure from the face-centred
crystal.

This process can most easily be visualised by comparing the unit cells of
the face-centred and the body-centred phases as it is shown in figure 6.52. If we
look at two neighbouring unit cells of the face-centred cubic structure, we see
a distorted body-centred unit cell between them that is compressed along two
of its axes and dilated in the third direction. A slight shift of the atoms in such
a distorted cell can thus transform the lattice to a body-centred cubic lattice
without any atoms having to exchange their places. The transformation is
thus diffusion-less. The energy for this process is provided by the lower energy
of the thermodynamically stable α phase. Because differently oriented grains
deform unequally in different spatial directions, considerable residual stresses
can be produced and distort the component.

This visualisation of the diffusion-less transformation according to Bain
is not totally correct. X-ray diffraction experiments have shown that,
in reality, the (111) planes of the face-centred cubic lattice become the



www.manaraa.com

6.4 Strengthening mechanisms 221

Fig. 6.53. Micrograph of a hardened C 60 steel. The martensite needles can be
observed

(011) planes of the body-centred lattice. A more detailed account of
the process is given by Fujita [52], but to understand the principle of
the process, these fine details are irrelevant.

The transformation begins at numerous sites within the crystal and proceeds
almost with the sonic speed. The movement of the atoms is coordinated, with
atoms adjacent to already transformed regions shifting to the new structure.
The orientation of the new lattice is not random, but depends on that of the
γ lattice. The α phase usually grows mainly in two dimensions, forming lens-
shaped structures. If a metallographic image of such a structure is taken, the
so-called martensite needles can be seen (figure 6.53). Because several transfor-
mations occur simultaneously within each grain, the resulting microstructure
is very fine. The fine microstructure produced by the martensitic transfor-
mation strengthens the material, for the large number of interfaces causes
strengthening similar to grain boundaries (see section 6.4.2). Furthermore,
the dislocation density increases markedly due to the mechanical distortion.

Technically, it is almost impossible to harden pure iron in this way because
the extreme cooling rates needed are very difficult to achieve. However, if
carbon is added, it significantly reduces the required cooling rates, making
the production of a martensitic microstructure feasible.

In addition, the carbon further strengthens the alloy considerably. The sol-
ubility of carbon is much smaller in the body-centred than in the face-centred
crystal structure because the interstitial spaces are smaller. If γ iron with
a sufficient amount of dissolved carbon (> 0.008 wt-%) is quenched, the car-
bon remains dissolved in the body-centred lattice. The carbon atoms strongly
distort the body-centred cubic cell to a tetragonal one (figure 6.54). This dis-
torted lattice structure has an extreme strength when highly oversaturated
because the stress field cannot be passed by dislocations. As a rule of thumb,
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it can be stated that at least 0.2% carbon are needed to achieve significant
strengthening by martensite transformation. The martensitic structure, how-
ever, is then extremely brittle.

To reduce the brittleness of the martensite, a subsequent heat treatment,
called tempering, can be used. Tempering reduces part of the lattice distor-
tion by precipitating finely distributed carbide particles (Fe3C), similar to
precipitation hardening. As a result, the strength of the steel decreases, but
its ductility increases substantially. The heat treatment cycle consisting of
quenching and subsequent tempering is often also referred to as ‘quench and
draw’, ‘draw the temper’, or ‘harden and temper’.

This possibility of creating an extremely oversaturated solid solution by
martensitic transformation is the reason for the immense technical importance
of carbon steels. In addition, the austenitic phase can be stabilised at room
temperature by the addition of other alloying elements, allowing the design
of a vast number of different alloys with varying properties (see, for example,
the book by Honeycombe [68]).

Martensitic transformations can also occur in other alloys. Of special
importance are shape memory alloys. The most commonly used are
based on nickel and titanium. In these alloys, a reversible martensitic
phase transformation can occur that will be briefly described here.

A typical shape memory alloy starts in its austenitic phase. When
the material is strained, it transforms to the martensitic phase, ori-
ented in a way to produce an elongation in the direction of the load.
When the load is removed, the austenitic phase forms again because
it the thermodynamically stable one. Thus it is possible to produce
reversible deformations with pseudo-elastic strains of several percent,
much more than usually possible for elastic strains in metals. For this
reason, the phenomenon is also called superelasticity. One advantage
of pseudo-elasticity is that the stress in the pseudo-elastic regime is
almost independent of the strain.

One application are tooth braces, containing a wire-shaped spring
made of a shape memory alloy that exerts a force on the teeth to be
repositioned. Due to the strain-independence of the stress, the wire
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does not need to be readjusted as soon as a tooth has moved. Tubes
to stabilise blood vessels, so-called stents can also be constructed in
this way. Here, a superelastic tube is compressed and placed inside a
catheter. In the compressed form, the tube can easily be moved through
the vessels to the designated position. The catheter is then removed and
the stent unfolds, preventing collapse of the vessel.

Because the stability of the phases also depends on temperature, a
shape memory alloy can also deform when the temperature is changed.
To achieve this, the alloy is at first heated to a temperature well within
the austenitic regime (usually several hundred degree centigrade). At
this temperature, it is formed to the desired shape and then quenched
to room temperature where martensite is stable. If the material is de-
formed now, deformation in the martensitic phase occurs not by dislo-
cation movement, but by reorientation of lattice planes, a process called
twinning that is described in the next section. After re-heating to the
austenitic phase, the original crystal lattice forms again, and the mate-
rial takes its old shape it has ‘remembered’, thus explaining the name
of these alloys. This shape memory effect can also be used in medicine,
for instance to precisely move catheters or endoscopes within the hu-
man body. Stents can also be constructed in this way by compressing
them plastically at low temperatures. The body heat lets them take
the desired shape after they have been positioned [22].

∗ 6.5 Mechanical twinning

Besides dislocation movement, there are other mechanisms of plastic deforma-
tion. These are the martensitic transformation we already discussed, diffusion
creep at high temperatures (to be covered in chapter 11), and finally the
so-called twinning. Mechanical twinning usually contributes only slightly to
plastic deformation and is in general more difficult to activate than dislocation
movement. Therefore, it will be discussed only briefly.

Mechanical twinning mainly occurs at low temperatures and in metals with
a small number of slip systems i. e., when slip of dislocation is difficult. The
hexagonal metals show a greater tendency to form twins. Mechanical twinning
is a shear deformation of the lattice in which atoms are shifted parallel to
the so-called twinning plane, as shown in figure 6.55. The orientation of the
twinning plane is determined by the crystal lattice. In contrast to dislocation
movement, single atoms can travel over large distances. The further away an
atom is from the twinning plane, the further it moves. In a polycrystalline
metal, large displacements of single atoms are not possible so that usually
two adjacent twinning planes form, producing a small twin band. The atoms
usually shear by a small angle only, whereas the orientation of the unit cell
can change by much larger values. For instance, in hexagonal crystals the
orientation can change by about 87° at a shear of about 7°. The shear angle
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Fig. 6.55. Illustration of mechanical twinning
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Fig. 6.56. Deformation twins in ferritic steel. The twinning planes can be observed
as lines within the grains, some marked by arrows

and the rotation of the unit cell are also determined by the crystal lattice.
Figure 6.5 shows mechanical twins in a ferritic steel (S 235 JR).

In hexagonal metals, which glide preferentially in the basal plane (cf. sec-
tion 6.2.4), the rotation of the lattice by twinning can lead to a more favourable
orientation of the crystal and thus increase the deformability by subsequent
dislocation movement.
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Mechanical behaviour of ceramics

Ceramics feature a high elastic stiffness, high strength – especially under com-
pressive loads –, good resistance against many chemicals, and a high temper-
ature stability. This latter point is only valid for crystalline ceramics, whose
high-temperature behaviour will be investigated in chapter 11. Amorphous ce-
ramics (glasses) do not have a melting point, but soften when the temperature
is increased and behave then like a viscous fluid, with decreasing viscosity at
increasing temperature. The softening temperature is considerably below the
melting temperature of typical crystalline ceramics. Window glass, for exam-
ple, can be deformed at temperatures of several hundred degree centigrade.
Because this behaviour of ceramics is similar to that of amorphous thermo-
plastics, subject of chapter 8, it will not be covered further in this chapter.

Besides the positive properties enumerated above, ceramics also have a
distinct disadvantage: They are brittle, which poses problems not only during
service, but also in manufacturing ceramic components. This brittle behaviour
of ceramics is – as already explained in section 1.3 – due to the nature of their
chemical bonds. Ceramics usually fail by brittle fracture, so their strength
is determined by initial cracks already present in the material. As these are
usually produced during manufacturing, the chapter starts with a brief survey
of these processes. Next, we will discuss the mechanisms that influence crack
propagation in ceramics and thus determine their strength. Because the size of
the initial cracks is stochastically distributed, statistic methods are required
to analyse the strength of ceramics. They are the topic of section 7.3. To
safely design components, the size of the largest crack can be restricted by
applying a load once that is larger than the expected service loads. This so-
called proof test will be covered in section 7.4. Finally, we will discuss methods
for strengthening ceramic materials.
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(a) Initial powder (b) Interim step (c) Final stage

Fig. 7.1. Sintering (after [9])

7.1 Manufacturing ceramics

Engineering ceramics are almost exclusively made from powders because they
cannot be cast in the liquid state due to their high melting temperature.1
The powder is formed to a near-net shape green body, for instance by cold
compaction in the dry state. Alternatively, ceramics can be shaped by mixing
them with a plasticiser or a liquid solvent. One example for this type of process
is slip casting where ceramic powder is mixed with a fluid (usually water or
alcohol) and poured into a porous ceramic mould. The capillarity of the mould
dehumidifies the ceramic powder. After drying, the ceramic is sufficiently rigid
to be taken out of the mould. In injection moulding, the ceramic powder is
mixed with a polymer binder and processed similarly to an injection moulded
polymer. However, the larger abrasion of the ceramic powder has to be taken
into account.

Next, the green body is compacted at high temperature, whereupon the
ceramic powder particles, previously only loosely bound mechanically or by
binders, bind chemically. Standard processes for this are sintering, hot press-
ing, and hot isostatic pressing (hip) [126]. While sintering is done without
external load, the other processes superimpose uniaxial or hydrostatic stresses.

Figure 7.1 sketches a sintering process. During compaction, material dif-
fuses to the contact area between the particles, driven by the energy gained
in reducing the surface. The contact areas round off and become larger. One
consequence of this process is that the component shrinks by as much as 30%
to 40%.2

Because ceramics sinter only slowly due to their high melting temperature,
a high sintering temperature alone is frequently not sufficient to produce dense
1 Ceramic glasses are an exception because they can be processed in the viscous

state when softened at elevated temperature.
2 This means a reduction of the length of the component in each direction of about

10% to 15%.
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ceramics without significant porosity between the former powder particles.
Sintering aids, like magnesium oxide (MgO) for silicon nitride (Si3N4), can
be added that produce a liquid phase at the sintering temperature and thus
facilitate the sintering process. One disadvantage is that this phase, the so-
called glassy phase, is amorphous and thus reduces the strength at elevated
service temperatures (creep strength, see chapter 11).

7.2 Mechanisms of crack propagation

Because dislocations are completely immobile in ceramics at room temper-
ature due to the directed atomic bonds and the complex crystal structures
(see section 1.3), ceramics can in general not deform plastically. Failure can
occur only by cleavage fracture, usually with initial cracks growing and prop-
agating. The pores remaining after compaction are defects acting as initial
cracks and thus cause failure by crack propagation. As there is no plastic
deformability, it cannot unload these initial cracks by evening out stress con-
centrations or dissipate energy during crack propagation. Therefore, the frac-
ture toughness of ceramics is comparably small. This is also reflected in the
toughness-strength diagram 5.11 on page 146. Because of the crack sensitivity
of ceramics, even small defects can determine the strength – the pre-cracks
formed during manufacturing are thus crucial for the mechanical behaviour.
The theoretical strength of a perfect ceramic without any defects is technically
irrelevant.

Usually, ceramics always contain cracks of different sizes with different ori-
entations. The strength of the ceramic is determined by the cracks with the
lowest failure strength. Under tensile loads, cracks can, depending on their
orientation, be loaded in all modes, I, II, or III (cf. section 5.1.1), under com-
pressive loads only in mode II or III, for the stress component perpendicular
to the crack surface closes the crack. Because the fracture toughness is much
smaller for mode I than for modes II or III, ceramics under tensile loads usu-
ally fail in this mode and are thus more sensitive to tensile than to compressive
stresses. The compressive strength of ceramics is usually 10 to 15 times larger
than its tensile strength.3

The fracture toughness is primarily determined by the strength of the
chemical bonds within the ceramic because this determines the energy needed
to create fresh surface. Beyond that, other effects within ceramics can occur
that impede crack propagation because they require additional energy and
thus increase the fracture toughness. The basic mechanisms are discussed in
this section; in section 7.5, we will see how they can be utilised to strengthen
ceramics.
3 This property of ceramics is exploited in the design of ferroconcrete (steel-

reinforced concrete), for example, see section 9.1.1.
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(a) Without particles (b) With particles

Fig. 7.2. Deflection of a crack by appropriate particles in a ceramic

7.2.1 Crack deflection

When the crack can be deflected from its straight path, the surface of the crack
per advanced distance becomes larger, thus requiring additional energy for
crack propagation and increasing the fracture toughness. This can be achieved
in several ways, often by adding particles.

One possible mechanism is the modulus interaction, already discussed in
another context in the chapter on metals (section 6.4.3). If the particles have
a larger Young’s modulus than the matrix, the matrix is partly unloaded in
the vicinity of the particles, and the stress available to propagate the crack
is reduced. The crack is deflected away from the particle (see figure 7.2). If
Young’s modulus of the particles is smaller than that of the matrix, the stress
is raised in the vicinity of the particles, and the crack is attracted by the
particle. If the crack cannot penetrate the particle, the crack must proceed
along its boundary. In all these cases, the crack path becomes longer.

Another way to deflect cracks are residual stresses caused by the particles.
Compressive stresses reduce the force opening the crack tip and thus repel
cracks. Such residual stresses can stem from differences in the coefficient of
thermal expansion of the particles or from phase transformations on cooling
from the sintering temperature.

7.2.2 Crack bridging

When the two opposed crack surfaces interact during crack propagation, the
energy dissipation during crack propagation can be increased or the crack tip
can be partially relieved. This kind of interaction can occur in coarse-grained
microstructures with intercrystalline crack propagation. In this case, the crack
surfaces can contact and rub against each other when the crack is opened (see
figure 7.3) or can even be geometrically clamped, so that the crack cannot
open at all. Fibres or particles are another crack bridging mechanism. Fibres
will be discussed in chapter 9.
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Fig. 7.3. Coarse-grained microstructure in which the crack surfaces are in contact
and dissipate energy by sliding on each other

(a) Microcracks (b) Crack branching

Fig. 7.4. Examples of microcracks and crack branching

7.2.3 Microcrack formation and crack branching

The stress concentration near the crack tip can create microcracks at weak
points in the ceramic. Examples are unfavourably oriented grain boundaries
(perpendicular to the largest principal stress as drawn in figure 7.4(a)), grains
with a cleavage plane perpendicular to the largest principal stress, or regions
containing residual stresses.

Microcrack formation raises the fracture toughness because it increases
the energy dissipation. This can be understood by looking at the stress-strain
diagram of a volume element that is passed by the crack tip (see figure 7.5):
When the volume element approaches the crack tip, its load increases, and
microcracks form. These reduce the stiffness of the volume element, causing
a reduction in the slope of the stress-strain curve. On unloading (when the
volume element moves away from the crack tip), the unloading curve is not
the same as the loading curve. The shaded area in the diagram is the energy
dissipated in this process; this additional energy has to be provided during
crack propagation.
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Fig. 7.5. Stress-strain diagram of a volume element during microcrack formation.
During the loading and unloading cycle, energy is dissipated, increasing the fracture
toughness

If microcracks have formed around the crack tip, further crack propagation
is hampered also because Young’s modulus is locally reduced. This reduces
the stress in this region and thus the driving force for crack propagation.4

Crack branching (figure 7.4(b)) also increases the crack surface and de-
creases Young’s modulus locally and can thus also impede crack propagation.

7.2.4 Stress-induced phase transformations

So-called stress-induced phase transformations can produce additional com-
pressive residual stresses during crack propagation and thus increase the crack-
growth resistance KIR. This is caused by particles in the matrix that can in-
crease their volume by a phase transformation. Initially, the particles have to
be in a metastable state which is thermodynamically unfavourable, but cannot
transform to the thermodynamically stable phase because a nucleation barrier
has to be overcome for this, similar to the process in precipitation hardening
(see section 6.4.4).

If a sufficiently large tensile stress is applied, for instance, at the crack
tip, it may need less energy to transform the particles to the phase with the
greater volume than to deform them elastically (figure 7.6). This case can also
be understood by considering the stress-strain diagram of a volume element
passed by the crack tip (figure 7.7). The phase transformation starts when the
elastic energy is sufficiently large. Because the particle was metastable prior
to the transformation, the transformation proceeds even when the stress be-
comes smaller due to the volume increase. During the transformation, tensile
4 This argument is only valid when the microcracks are restricted to the region

around the crack tip. If the whole material is cracked, the global stiffness is
reduced and fracture toughness decreases, see also section 7.5.3.
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Fig. 7.6. Unloading of a crack by a phase transformation of particles. In the process
zone, residual compressive stresses are superimposed to the external tensile stress
field

"

¾

dissipated

energy

phase transformation

lo
a
d
in

g

u
n
lo

a
d
in

g

Fig. 7.7. Stress-strain diagram of a volume element, showing stress-induced phase
transformations (after [46]). Similar to the formation of microcracks (figure 7.5),
energy is dissipated during the loading and unloading cycle and thus increases the
fracture toughness

stresses in circumferential and compressive stresses in radial direction around
the particles are superimposed to the external load. After unloading, part of
the volume increase remains and compressive residual stresses are generated
that reduce the stress on the crack and thus may partly or totally close it.

Because of the tensile stresses in circumferential direction around the par-
ticles, microcracks can form and – as described in the previous section – cause
further dissipation of energy (see also section 7.5.3).

To be more precise, the stress-induced transformation is based on a
reduction of the free enthalpy, defined in equation (C.4). The phase with
the larger volume is thermodynamically stable, but, as already stated,
a nucleation barrier has to be overcome to transform the particle. If
hydrostatic tensile stress is added, the free enthalpy of the phase with
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the larger volume decreases more strongly, according to equation (C.4),
thus increasing the driving force for the transformation that enables
the particle to overcome the nucleation barrier.

In some metals, an analogous behaviour is observed: The stainless
steel X 5CrNi 18-10, which is austenitic (face-centred cubic) at room
temperature, is only metastable. Thus, the ferritic phase is thermody-
namically stable, but the transformation does not occur because the
driving force is too small. Under mechanical load, for instance during
forming, a martensitic transformation can take place in parts of the
component, easily detectable by the component becoming ferromag-
netic locally.

7.2.5 Stable crack growth

In the previous sections (7.2.2 to 7.2.4), we encountered several mechanisms
(crack bridging, microcracking, stress-induced phase transformations) that
may increase the crack-growth resistance of a material. They all have in com-
mon that the resistance initially grows during crack growth because a process
zone forms near the crack tip and are thus examples for the mechanism dis-
cussed in section 5.2.5. If conditions are appropriate, stable crack growth may
thus occur in a certain stress range.

The crack-growth resistance increases during crack propagation as long as
the process zone grows. For example, if friction of the crack surfaces (figure 7.3)
occurs, the crack-growth resistance initially increases because the contact area
of the surfaces grows. If the crack propagates further, a stationary state is
reached because parts of the surface far away from the crack tip will not
touch anymore when the crack has opened too much. Then, the crack-growth
resistance stays constant because for every newly formed region of fracture
an equally large region is lost further away from the crack tip. When energy
is dissipated within the material, as it happens in microcracking or stress-
induced phase transformations, the process zone initially grows, for initially
there are no microcracks or transformed particles near the crack tip. Only
after a stable equilibrium is reached does the crack-growth resistance remain
constant.

∗ 7.2.6 Subcritical crack growth in ceramics

In section 5.2.6, it was explained that ceramics may, under certain conditions,
exhibit subcritical crack propagation which can be quantified using the crack-
growth rate da/dt. Figure 7.8 shows crack growth curves for a glass in different
environments. Frequently, the crack growth curve is a line when a log-log scale
is used (region 1○). In some cases, a plateau follows (region 2○), and, finally,
the crack-growth rate rapidly increases shortly before reaching the fracture
toughness KIc (region 3○).
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Fig. 7.8. Dependence of the crack-growth rate on the stress intensity factor of
soda-lime glass in water and toluene (phenylmethane) at 25℃ [104]

Often, a power law is used to describe the crack-growth rate in region 1○:

da

dt
= AKn

I = A∗
(

KI

KIc

)n

(7.1)

where n, A, and A∗ are temperature-dependent material parameters [103].5
The unit of A depends on the exponent n and can thus contain fractional
exponents. To avoid this, A∗ can be used which has always the unit of a velocity
because KI/KIc is dimensionless. As already mentioned in section 5.2.6, the
dependence of the crack-growth rate on the stress intensity factor is sometimes
very strong, resulting in a large value of the exponent n in equation (7.1).

If a time-dependent stress σ(t) is applied, the life time of the component
can be calculated by integration of equation (7.1). If the load is static, it is

tf = B∗σ−n = Bσn−2
c σ−n , (7.2)

where B∗ and B depend on the material and, via the geometry factor Y ,
also on the geometry. σc is the so-called inert strength, the load required to
break the specimen in a chemically inert environment where it would fail
not by subcritical crack growth, but by fracture at KIc. Because the stress
exponent n is large, there is a strong dependence of the time to failure on the
applied stress. In table 7.1, some examples for the stress exponent n and the
prefactor are summarised.

The effect of time-dependent loads on subcritical crack growth will be
discussed in section 10.3. In exercise 24, an example for designing ceramic
components against subcritical crack growth is given.
5 This shape of the crack growth curve da/dt is very similar to the crack-growth

rate da/dN in cyclic loading of metals, to be discussed in section 10.6.1.
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Table 7.1. Exemplary parameters of subcritical crack propagation [104]. For the
specimen geometry investigated, Y = 1 holds true; the parameter B∗ thus contains
only material parameters

ceramic medium T/℃ n lg
`
B∗/(MPanh)

´
Al2O3 water 20 52.2 . . . 67.6 121.1 . . . 162.7
Al2O3 conc. saline solution 70 20 45.5

Si3N4 + 5.5%Y2O3 1 100 37 106.5
1 200 30 84.2

Si3N4 + 2.5%MgO 1000 26 69.8
1 100 22.6 61.8

7.3 Statistical fracture mechanics

Because ceramics cannot compensate for inner defects by plastic deformation,
the statistical scatter of defect sizes causes a large scatter in the mechanical
properties, different from metals and polymers. Therefore, it is usually not
sufficient to simply state a failure load. Because it is not feasible to measure the
size and position of every single defect within a component and thus to predict
its strength exactly (deterministically), the statistics of the defect distribution
is considered, and, using the methods of statistical fracture mechanics, a failure
or survival probability is calculated.

The objective of this section is to describe the probability of failure of
a ceramic component analytically, using statistical fracture mechanics. Sim-
plifyingly, we assume that defects with a certain defect size are distributed
homogeneously in the material and that crack propagation at only one of them
will cause complete failure. Initially, we will also assume a constant stress σ
within the component.

The probability of failure Pf(σ) states the probability of the component
failing when the stress σ is applied. If, for instance, in a batch of (macroscop-
ically) identical specimens, the probability of failure is Pf(200 MPa) = 0.3,
30% of the specimens will fracture when we try to apply a load of 200 MPa.
The value is not be understood in such a way that 30% of the specimens will
fail exactly at this stress value, but at stresses lower or equal to it.

If defects were not statistically distributed, the behaviour of the material
would be deterministic: It would fail at a critical stress σ0 and the probability
of failure would discontinuously change from 0 to 1. In reality, there is always
a probability that the material will bear larger loads or will fail at smaller
ones, and the ‘edge’ at σ0 is rounded off.

7.3.1 Weibull statistics

Usually, ceramics fail as soon as a crack starts to propagate. Therefore, their
strength is determined by the stress value at which the first, and thus critical,
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crack starts to grow. The probability of failure is thus given by the probability
that the critical crack has a certain failure stress. If loads are tensile, one of
the cracks that are at least partially loaded in mode I will govern the strength.

To describe the probability of failure, a statistical approach is needed
that takes into account the statistical distribution of the density and
size of the cracks [104].

If we consider a component with homogeneous stress distribution
and known number of defects, the size distribution of the defects can
be used to determine the failure probability. This is equal to the prob-
ability that at least one crack has the critical crack length. As the
critical crack determines failure, only the largest defects are relevant.
The probability of finding a large defect eventually becomes smaller
with increasing defect size; therefore, different defect size distributions
will look similar in the relevant region. The details of the defect size
distribution are thus not important.

Because the number of defects differs between different components,
the defect density distribution must also be taken into account by using
it to accumulate the probability of failure for all possible numbers of
defects.

From these statistical considerations, it can be shown that the failure stress σ
of the critical defect is distributed according to the so-called Weibull distribu-
tion. From this, the probability of failure can be calculated as6

Pf(σ) = 1− exp
[
−

(
σ

σ0

)m]
. (7.3)

The parameter m, called the Weibull modulus, quantifies the scatter of the
strength values and is thus a measure of how strongly the edge in a plot of the
probability of failure is rounded off as shown in figure 7.9 for some examples.
As can be seen, a larger Weibull modulus reduces the scatter of the failure
stress. For m →∞, there is no scatter anymore, and σ0 is equal to the fracture
stress. The Weibull modulus is a material parameter; the reference stress σ0

depends on the material and the specimen volume. Equation (7.3) is only
valid when a constant, homogeneously loaded specimen volume is considered.
The influence of the volume will be discussed from the following page onwards.
Table 7.2 gives a synopsis of some values for the Weibull modulus in different
materials.

Frequently, a linearised representation of the probability of failure is used.
For this purpose, equation (7.3) is re-written as follows:

1− Pf = exp
[
−

(
σ

σ0

)m]
,

6 To correctly describe the probability of failure, the volume of the component must
also be taken into account, see equation (7.6) below.
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Fig. 7.9. Dependence of the failure probability on the stress for several Weibull
moduli

Table 7.2. Weibull modulus m and reference stress σ0 of some ceramics (after [58,
64, 104]). V0 is the reference volume in equation (7.6). For comparison, the Weibull
modulus of cast iron and steel is specified

material m σ0/MPa V0/mm3

SiC 8 . . . 27 250 . . . 600 1
Al2O3 8 . . . 20 100 . . . 600 1
Si3N4 8 . . . 9 750 . . . 1 350 1
ZrO2 10 . . . 15 200 . . . 500 1

cast iron ≈ 40
steel ≈ 100

1
1− Pf

= exp
[(

σ

σ0

)m]
,

ln
1

1− Pf
=

(
σ

σ0

)m

,

ln
(

ln
1

1− Pf

)
= m ln

σ

σ0
. (7.4)

If we now plot ln
(
ln[1/(1 − Pf)]

)
as a measure of the probability of failure

versus ln(σ/σ0) as a measure for the applied stress, a linear equation with
slope m through the origin results as sketched in figure 7.10.

The probability of failure in equation (7.3) depends on the material volume.
This is plausible if we assume that a single defect of critical size will cause
the component to fail, for, if the volume and thus the number of defects is
increased, the probability of a critical defect being present increases as well.
This will now be shown using an example. It is useful to consider the probability
of survival Ps instead of the probability of failure, defined as
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Fig. 7.10. Plot of the Weibull equation in linearised representation

V0g+g+g−g−
Ps,1(V0) = 0.5

+ V0g+g−g+g−
Ps,2(V0) = 0.5

=⇒ V = 2V0g+ + g+ ⇒ g+g+ + g− ⇒ g−g− + g+ ⇒ g−g− + g− ⇒ g−
Ps(V = 2V0) = 0.25

Fig. 7.11. Demonstration of the volume dependence of the survival probability.
The circled symbols denote the chances for survival and failure of the component,
respectively ( g+: survival, g−: failure)

Ps = 1− Pf .

Consider two specimens with the probabilities of survival Ps,1(V0) = Ps,2(V0) =
0.5 and volumes V0. If we join them to a single specimen of volume V = 2V0

and enumerate all possibilities of survival or failure (see figure 7.11), the prob-
ability of survival is Ps(V = 2V0) = 0.25.

To analyse the volume effect in general, we consider a specimen of vol-
ume V , loaded homogeneously with a load σ. If we imagine it to be composed
of n partial volumes V0 with a probability of survival Ps,i(V0), the specimen
survives if all partial volumes do. According to the laws of probability, the
probability of survival of the total volume is

Ps(V ) =
n∏

i=1

Ps,i(V0) =
[
Ps,i(V0)

]n
.

Using n = V/V0 yields

Ps(V ) =
[
Ps,i(V0)

]V/V0
. (7.5)
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For the example from figure 7.11, we get the same result from this equation
as calculated above: Ps(V = 2V0) = 0.52 = 0.25.

With

Ps,i(V0) = exp
[
−

(
σ

σ0

)m]
, i = 1 . . . n,

and (ex)y = exy, we get from equation (7.5)

Ps(V ) = exp
[
− V

V0

(
σ

σ0

)m]
,

Pf(V ) = 1− exp
[
− V

V0

(
σ

σ0

)m]
. (7.6)

V0 is called the reference volume. This general equation must replace equa-
tion (7.3) when the volume dependence is to be taken into account correctly.
It is called the Weibull equation.

So far, we always assumed that the whole component was homoge-
neously loaded with a constant stress σ. In practice, this is seldom
the case, for instance in bending problems or at stress concentrations
in notches. If the component is loaded with different stresses σi in its
partial volumes Vi, the probability of survival is

Ps(V ) =

nY
i=1

Ps,i(Vi, σi) =

nY
i=1

exp

»
− Vi

V0

„
σi

σ0

«m–

= exp

"
−

nX
i=1

Vi

V0

„
σi

σ0

«m
#

.

When taking the limit of infinitely small volumes, we have to replace
the sum by an integral

Ps(V ) = exp

»
− 1

V0

Z „
σ(x)

σ0

«m

dV

–
. (7.7)

This is the general form of the Weibull equation for arbitrarily loaded
components.

When failure of a ceramic is not caused by volume defects, but
by surface defects, the probability of failure depends on the surface.
Instead of summing or integrating over partial volumes, partial surface
elements have to be used in this case [103].

Sometimes, another material parameter σl is introduced in equation (7.6)

Pf(σ, V ) =

1− exp
[
− V

V0

(
σ − σl

σ0

)m]
for σ ≥ σl,

0 for σ < σl.
(7.8)
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Fig. 7.12. Permissible stress for the examples

This parameter allows for a lower limit stress σl below which the probability
of failure is zero. The underlying distribution is called three-parameter Weibull
distribution. In the following, we will usually assume σl = 0, however.

If the Weibull modulus m and the reference stress σ0 are known, compo-
nents can be designed using the Weibull equation (7.6) or (7.8). The engineer
chooses a probability of survival (or failure) to be met by the component
(e. g., Pf ≤ 10−5: one in 100 000 components may fail). Putting this into equa-
tion (7.8) and solving for σ yields the maximum allowed stress

σlimit = σl + σ0
m

√
−V0

V
ln(1− Pf) . (7.9)

Examples

A ceramic cutting tool is to be manufactured from a material with parameters
σ0 = 300 MPa, σl = 0MPa and m = 10. The probability of failure was chosen
to be Pf = 10−2. To calculate the maximum allowed stress for different tool
volumes, we can use equation (7.9):

σlimit = 300MPa× 10

√
−V0

V
× ln 0.99 = 189.4 MPa× 10

√
V0

V
.

Figure 7.12(a) plots the dependence of the allowed stress on the tool volume.
As a second example, the dependence of the allowed stress on the Weibull

modulus is calculated for a ceramic exhaust valve. The design parameters are
Pf = 10−6, σ0 = 300MPa, σl = 0MPa, and V = V0. From equation (7.9), we
find

σlimit = 300MPa× m
√
− ln(1− 10−6) = 300 MPa× m

√
10−6 .
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Fig. 7.13. Failure probability depending on the loading duration. Depending on
the Weibull modulus m∗, characteristic curves arise

Figure 7.12(b) shows the dependence of the stress on the Weibull modulus. As
the figure illustrates, the allowed maximum stress σlimit is much smaller than
σ0 due to the high component reliability required7. Decreasing the scatter in
the failure stress (increasing m) significantly increases the allowed stress.

∗ 7.3.2 Weibull statistics for subcritical crack growth

If a ceramic can fail by subcritical crack growth, its life time when loaded
with a certain stress can be calculated from equation (7.2). In section 7.2.6,
we used a deterministic approach to do so, but by now we have learned that
the failure stress values scatter and the probability of failure follows a Weibull
distribution Pf(σ). The time to failure, depending on the failure stress, must
therefore also be distributed stochastically.

The failure probability after a certain time tf can be calculated when
equation (7.2) is solved for σ, putting the result into equation (7.6):

Pf(tf) = 1− exp

[
− V

V0

(
tf

t0(σ)

)m∗]
. (7.10)

Here, m∗ = m/(n − 2) is the Weibull modulus for the life time and t0(σ) =
B∗σ−n the reference time. This equation is completely analogous to equa-
tion (7.6), but another Weibull modulus and a reference time instead of a
reference stress have to be used.

The Weibull modulus m∗ characterises the failure type of the ceramic [2].
If m∗ < 1, failure usually occurs shortly after applying the load (so-called
infant failure, see figure 7.13). If m∗ = 1, the probability of failure is the
7 For example, if m = 10, the allowed stress is only 75MPa.
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Fig. 7.14. Plot of the number of specimens ni that have failed within the stress
interval i of width ∆σ. The total number of specimens is N = 60. The ‘discrete
probability density’ fi results from equation (7.11). As approximation, a Weibull
distribution according to equation (7.13) with the parameters V/V0 = 1, m = 2.2,
σl = 65MPa, and σ0 = 215MPa has been used

same at each time interval in each specimen. If m > 1, there is a certain most
probable time of failure t0.

∗ 7.3.3 Measuring the parameters σ0 and m

To measure the failure probability, a large number of experiments are per-
formed on identical specimens, measuring the failure stress σi or failure time
ti of each. In both cases, the determination of the parameters (σ0 and m or
t0 and m∗, respectively) is done in the same way. In the following, we use the
example of the failure stress.

One method to determine the distribution of failure stresses is to divide
the stress region containing the failure stress values into intervals of width
∆σ as shown in figure 7.14. For each stress interval i, we count the number of
specimens that failed at stress values within it. The probability that another
specimen will also fail in this stress interval is given by ni/N . Normalising
this by the interval width ∆σ yields the ‘discrete probability density’ fi:

fi =
ni

N∆σ
. (7.11)

The values of fi are shown as columns in figure 7.14.
The ‘discrete probability density’ fi can be approximated by a func-

tion f(σ) which can be determined from the probability of failure Pf . If we
increase the stress σ by ∆σ, a fraction of Pf(σ +∆σ)−Pf(σ) of all specimens
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Fig. 7.15. Plot of the accumulated number of specimens
Pi

j=0 nj failed until the
end of the current stress interval. The normalised number results from dividing by
the total specimen number N ; the normalised number approaches one for a large
stress. The resulting failure probability Pf is plotted for the parameters V/V0 = 1,
m = 2.2, σl = 65MPa, and σ0 = 215MPa, according to figure 7.14

will fail in this stress interval. Normalising this number by the stress interval
∆σ as we did in equation (7.11) and taking the limit ∆σ → 0 yields

f(σ) = lim
∆σ→0

Pf(σ + ∆σ)− Pf(σ)
∆σ

=
dPf

dσ
. (7.12)

Thus, the probability density f(σ) is the derivative of the probability of failure
with respect to the stress. Using equation (7.8) for the probability of failure
results in the Weibull distribution [58, 146]

f(σ) =


V

V0

m

σ0

(
σ − σl

σ0

)m−1

exp
[
− V

V0

(
σ − σl

σ0

)m]
for σ ≥ σl,

0 for σ < σl,
(7.13)

shown as dashed line in figure 7.14. As before, V is the volume of the compo-
nents for which the probability of failure is to be determined, and V0 is the
volume of the test specimen used to determine the parameters σ0, σl, and m.

The measured values from figure 7.14 can also be used to determine the
probability of failure when all specimens are counted that have fractured at
stresses below those at the end of each interval. This is shown in figure 7.15.

Another way to determine the Weibull modulus m and the reference stress
σ0 considers each measured value directly, without grouping it in intervals in a
histogram. We assign an estimate of the failure probability to each measured
value of the fracture stress, starting with a very small value for the smallest
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Table 7.3. Estimated failure probabili-
ties P̃f,i for 12 measurements on Al2O3

i σi/MPa P̃f,i

1 234.0 0.042
2 257.4 0.125
3 273.0 0.208
4 273.8 0.292
5 275.3 0.375
6 276.9 0.458
7 280.8 0.542
8 288.6 0.625
9 290.2 0.708

10 296.4 0.792
11 312.0 0.875
12 335.4 0.958
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Fig. 7.16. Plot of the failure probabilities
for the experimental data in table 7.3. Addi-
tionally, the curve calibrated to the experi-
mental data using equation (7.3) is included

measured fracture stress σ1 because only a small fraction of all specimens had
failed at this stress level. Similarly, the largest stress σN is assigned a value
close to one, for no specimen remains intact. To be more precise, the following
estimate is used at each fracture stress value:

P̃f,i =
i− 0.5

N
. (7.14)

Here, N is the number of specimens and i its index, sorted from the smallest to
the largest value of the fracture stress. Table 7.3 shows an example with values
for Al2O3. This corresponds to plotting the normalised number of specimens
broken until the current stress value has been reached, but corrected in such
a way that the value for the first specimen is as far from zero as that of the
final specimen is from one. Figure 7.16 shows a plot of this for the values from
table 7.3.

The objective is now to use equation (7.3) to approximate the measured
values by adapting the parameters m and σ0.8 Using the linearised form (7.4),
approximations for m and σ0 can be calculated analytically. For this, we re-
write the equation as follows:

ln
(

ln
1

1− Pf

)
= m ln

σ

MPa
−m ln

σ0

MPa
. (7.15)

If we now plot ln
(
ln[1/(1− P̃f,i)]

)
versus ln(σi/MPa) for all measured values,

a simple linear regression or a graphical method can be used to fit equa-
tion (7.15) to the values. This is shown in figure 7.17. In figure 7.16, the
transformation back to the σ-Pf coordinate system has been performed. The
method is also used in exercise 22.
8 It is not necessary to use the volume-dependent Weibull equation (7.6) because

we determine the parameters for the specimen volume V0.
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Fig. 7.17. Determination of the parameters m = 13.1 and σ0 = 294MPa using
experimental data

∗ 7.4 Proof test

The large scatter of the mechanical properties of ceramics is problematic for
the engineer because failure may occur even at small loads. If such a failure
cannot be avoided, the design has to be extremely conservative and it is thus
almost impossible to exploit the advantages of ceramics.

One way to overcome this problem is the proof test. Here, the component
is momentarily loaded with a proof stress σp that is larger than the largest
stress expected in service. All components with a strength σ smaller than σp

will fail the test.
As long as no subcritical crack propagation (section 5.2.6) or fatigue (sec-

tion 10.3) occurs, the tested component is now fail-safe in service if σp is never
exceeded. But even if it is, the proof test reduces the probability of failure at a
certain stress level. This change in the probability of failure is now calculated.

Before the proof test, the probability of failure Pf is given by equa-
tion (7.3).9 After the proof test, only components with a failure stress σ > σp

remain. For them, the probability density g(σ) is calculated by cutting off the
original probability density f(σ) at σp (see figure 7.18). However, g(σ) has to
be normalised again to ensure that the failure probability

Gf(σ) =
∫ σ

σp

g(σ)dσ

becomes 1 for σ → ∞. To do so, Gf is calculated from the quotient of the
two areas shown in figure 7.18. A1 is the area below f(σ) between the proof
9 It is sufficient to use the equation without volume dependence because the tested

component is identical to the one in service.
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Fig. 7.18. Probability density before (f) and after (g) a proof test at σp [104]. The
marked areas A1 and A2 are used to calculate the distribution function Gf after the
proof test

stress σp and the current stress σ, whereas A2 is the total area below the
curve f(σ) for values larger than σp. Thus, Gf is

Gf(σ) =
A1(σ)

A2
=

∫ σ

σp
f(σ)dσ∫∞

σp
f(σ)dσ

.

Because f(σ) is the derivative of Pf(σ), the integrals can be calculated as
follows:

Gf(σ) =

{
1− exp

[
−

(
σ

σ0

)m]}
−

{
1− exp

[
−

(
σp

σ0

)m]}
1−

{
1− exp

[
−

(
σp

σ0

)m]}
= 1− exp

[
−

(
σ

σ0

)m

+
(

σp

σ0

)m]
. (7.16)

This equation states the probability of failure for components tested with a
proof stress σp. It is only valid for σ > σp; otherwise, the probability of failure
is zero. Figure 7.19 shows the probability of failure before (Pf(σ)) and after
(Gf(σ)) the proof test with a linear scale and in the linearised form. Below σp,
the probability of failure is zero. But even above the proof stress, it is smaller
than before the proof test because removing the failed specimens has changed
the normalisation.

If we perform a proof test for the example from section 7.3.3 (σ0 =
294 MPa, m = 13.1), using a proof stress of σp = 220 MPa, 2.2% of the com-
ponents will fail the test. For the remainder, the new probability of failure
is

Gf(σ) = 1− exp
[
−

( σ

294 MPa

)13.1

+ 0.022
]

.



www.manaraa.com

248 7 Mechanical behaviour of ceramics

0

1

0 σp

σ

Pf ,

Gf

Pf(σ)

Gf(σ)

(a) Linear scale

ln σp

ln σ

ln

“

ln
1

1−Pf

”

,

ln

“

ln
1

1−Gf

”

Pf(σ)

Gf(σ)

(b) Linearised representation ac-
cording to figure 7.10 [104]

Fig. 7.19. Failure probability before (Pf) and after (Gf) the proof test with σp

Below 220 MPa, the probability of failure is zero. If the proof stress is exceeded,
the probability of failure is reduced, for example from 3.9% to 1.8% at a stress
of σ = 230 MPa.

It is crucial to simulate the in-service stress distribution of the component
as closely as possible during the proof test. This is not always feasible, for
example in the case of thermal stresses simulated by mechanical ones. To gain
sufficient safety, a large value of the proof stress can be chosen, although this
has the disadvantage of producing unnecessary scrap parts.

7.5 Strengthening ceramics

Similar to metals, strengthening ceramics is of great technical importance.
The methods used for metals (section 6.4) cannot be used for ceramics because
they are all based on impeding dislocation movement, a phenomenon that is
completely irrelevant for the failure of ceramics. In this section, we will discuss
some methods appropriate for strengthening ceramics.

There are two approaches: In the first, we try to reduce the size of defects
or initial cracks in the material, thus increasing the critical stress according
to equation (5.4). The fracture toughness remains unchanged. In the other
approach, the energy dissipation during crack propagation is increased, also
increasing the fracture toughness. The basic mechanisms have already been
discussed in section 7.2. Frequently, particles or fibres are added to the ce-
ramic. Ceramics strengthened by particles are called dispersion-strengthened
ceramics and will be discussed here; fibre-reinforced ceramics are one topic of
chapter 9. Table 7.4 summarises the mechanical properties of some technically
important ceramics.
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Table 7.4. Mechanical properties of some ceramics [142]. σB is the failure stress in
a four-point-bending experiment

ceramic E KIc σB m
GPa MPa

√
m MPa

ssn 290 . . . 330 5 . . . 8.5 700 . . . 1 000 10 . . . 15
(Si3N4, sintered)
rbsn 80 . . . 180 1.8 . . . 4 200 . . . 330 14 . . . 16
(Si3N4, reaction bonded)

ati 10 . . . 50 3 . . . 5 15 . . . 100 10 . . . 12
(Al2O3 · TiO2)

psz (ZrO2) 200 . . . 210 5.8 . . . 10.5 500 . . . 1 000 20 . . . 25

aluminium oxide 220 . . . 380 4 . . . 5.5 230 . . . 580 10 . . . 15
(Al2O3)
zta 380 4.4 . . . 5 400 . . . 480 10 . . . 15
(Al2O3 + ZrO2 particles)

7.5.1 Reducing defect size

We already saw in section 7.1 that the defect size distribution of compacted
ceramics crucially depends on the manufacturing process. Methods aiding the
compaction process, for instance by adding a compressive stress or sintering
aids, should therefore increase the strength. However, all these methods have
their disadvantages as well: hot isostatic pressing, for example, is much more
expensive than sintering, whereas sintering aids cause the formation of an
amorphous glassy phase on the grain boundaries and thus may impair the
mechanical high-temperature behaviour.

Another important parameter is the size of the ceramic powder used. It
should be chosen as fine as possible for two reasons: Fine powder enlargens
the specific surface of the green body and thus improves sintering. In addi-
tion, the size of the cavities between the powder particles scales with their
size. Both effects reduce the pore size after compaction. Table 7.5 shows this
effect for Al2O3. It can be clearly seen that the physical properties are not
changed significantly by decreasing the powder size, but the strength improves
considerably.

7.5.2 Crack deflection

We saw in section 7.2.1 that a crack can be deflected by adding particles that
the crack cannot penetrate. One example for a ceramic strengthened this way
is sintered silicon nitride (ssn, Si3N4) which contains elongated, rod-shaped
crystallites with a large aspect ratio. Due to the sintering process, they are
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Table 7.5. Comparison of the properties of Al2O3 with the purity 99.9% produced
by two different powder sizes [101]

fine coarse

powder size µm 1 . . . 6 15 . . . 45
density g/cm3 3.96 3.99
Young’s modulus MPa 366 000 393 000
tensile strength MPa 310 206
bending strength MPa 551 282
compressive strength MPa 3 790 2 549

surrounded by a very thin fringe which may be either in a glassy or crys-
talline state. During crack propagation, the crack cannot penetrate the Si3N4

crystallites. Instead, it has to grow along the thin fringe and to wind around
the rod-shaped grains [60]. Due to this mechanism, the fracture toughness
of ssn is surprisingly large for an unreinforced ceramic (see table 7.4). Be-
cause of their high wear and corrosion resistance and their strength, silicon
nitride ceramics are used in bearings, valves, cutting tools, and in apparatus
engineering [103].

Silicon nitride can crystallise in two different structures, the α and
β phase. Both are hexagonal, but the unit cell is about twice as large
in c direction in the β as in the α phase [25]. Manufacturing starts
with powders made of α-Si3N4 grains. During sintering, they trans-
form to particles of the thermodynamically more stable β phase. The
particles are elongated because they grow preferentially in one direc-
tion. To achieve complete compaction, sintering aids are added that
are responsible for the formation of the glassy layer along the grain
boundaries.

Alternatively, Si3N4 can be manufactured as reaction bonded silicon
nitride (rbsn). This process starts with silicon powder that reacts with
nitrogen in a nitrogen atmosphere. This produces a somewhat porous
ceramic, containing both α and β phase. The strength of this material
is much smaller than that of sintered silicon nitride due to the different
grains and the larger defect size caused by the increased porosity (see
table 7.4).

In fibre-reinforced ceramics, deflection of the crack is an important means of
increasing fracture toughness as we will see in chapter 9. One example for a
biological material with a fracture toughness that is increased by a similar
mechanism as sintered silicon nitride is mother-of-pearl (see section 9.4.4).

Residual stresses near particles may, as explained in section 7.2.1, also
deflect a crack. One example is silicon nitride reinforced with titanium ni-
tride [20]. Due to the difference in thermal expansion of the two materials,
the matrix is stressed compressively near the particles, impeding crack propa-
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Fig. 7.20. Microcracks around a particle (after [137])

gation. The fracture toughness KIc of silicon nitride can be increased by 11%
when 30 wt-% of titanium nitride are added. The titanium nitride particles
also improve the wear resistance.

7.5.3 Microcracks

The formation of microcracks during crack propagation can increase the frac-
ture toughness due to additionally dissipated energy (see section 7.2.3). Fre-
quently, microcracks are created in the manufacturing process. Depending on
their distribution, they may either increase or decrease fracture toughness.
Both can be advantageous, depending on the requirements of the application.

One case where the fracture toughness increases is sketched in figure 7.20.
Here, microcracks have formed near a particle during manufacturing, either
due to differences in the coefficient of thermal expansion of matrix and particle
or to a phase transformation of the particle. It is crucial that the microcracks
reduce the elastic modulus locally [19, 137], resulting in an attraction of the
crack by the particle. When the crack approaches the particle, the crack tip is
partially unloaded because microcracks in its vicinity open as well. Locally con-
centrated microcracks thus cause crack deflection with an increase of the crack
surface and also crack branching at the particles. One example is aluminium
oxide reinforced with zirconium oxide (ZrO2) particles that can undergo a
phase transformation during manufacturing. As we will see below, the parti-
cles have to be sufficiently large for this to be possible. On the other hand,
they must not be too large because otherwise the microcracks themselves
would reduce the strength. This is one principal problem of strengthening by
microcracks – frequently, the fracture toughness increases, but the strength
does not.

If microcracks are not restricted to the vicinity of the crack tip or the
particles, but are homogeneously distributed throughout the volume, they
globally reduce Young’s modulus. In a stress-controlled situation, the stored
elastic strain energy increases according to section 2.4.1, thus increasing the
energy release rate GI during crack propagation (see equation (5.10)). Crack
propagation can occur at smaller stresses, and the fracture toughness decreases
with decreasing Young’s modulus according to equation (5.16). For strain-
controlled applications, however, a smaller Young’s modulus – caused, for
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example, by microcracks – is advantageous because the reduction of the stress
due to the smaller Young’s modulus is larger than the decrease in fracture
toughness KIc. From equations (5.15) and (5.16), using also σc = Eεc, we
find

εc =

√
GIc

Eπa
. (7.17)

The critical strain εc has increased because of the reduced stiffness.
One example for a ceramic with homogeneously distributed microcracks

is aluminium titanate (ati, Al2O3 · TiO2). Due to its rhombohedral crystal
structure, its thermal expansion is strongly anisotropic. In two directions, we
find positive coefficients of thermal expansion, but in the third direction the
coefficient is negative; there is ‘thermal contraction’. During cooling from the
sintering temperature, this causes large residual stresses which lead to mi-
crocracking. This is the reason for the small Young’s modulus and the small
fracture toughness and strength shown in table 7.4. Macroscopically, the co-
efficient of thermal expansion of ati is very small and, together with the
small Young’s modulus, makes the material very resistant against thermal
shock [142].

7.5.4 Transformation toughening

Transformation toughening increases the crack-growth resistance by produc-
ing compressive residual stresses in the material during crack propagation.
These are caused by stress-induced phase transformations, described in sec-
tion 7.2.4. To achieve this, particles are added to the matrix that perform a
phase transformation that results in a larger volume of the particles when a
sufficient tensile stress is applied.

Zirconium oxide (ZrO2) is especially suited for transformation toughening.
Pure zirconium oxide solidifies at a temperature of 2680℃ in a cubic lattice
that is stable down to a temperature of 2370℃ (cf. figure 7.21). Here, ZrO2

transforms to a tetragonal phase. On further cooling, the monoclinic phase
becomes stable at 1170℃. This usually occurs by a martensitic, diffusion-
less phase transformation (see section 6.4.5) in which the volume grows by
3% to 5% and the material is sheared by 1% to 7%. This process is almost
impossible to suppress when manufacturing pure zirconium oxide and causes
residual stresses that are so large as to damage the material excessively by
crack formation. Accordingly, pure zirconium oxide cannot be used for load-
bearing applications.

Transformation toughening occurs when the zirconium oxide is in the
metastable, tetragonal phase. This can be achieved by stabilising the tetrago-
nal phase with another oxide. For example, by adding yttrium oxide (yttria,
Y2O3) to zirconium oxide, the transformation temperature can be reduced to
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Fig. 7.21. Phase diagram of the system ZrO2-Y2O3 (after [26])

550℃ (see figure 7.21).10 To transform from the tetragonal to the monoclinic
phase, an energy barrier must be overcome because sufficiently large nuclei of
the monoclinic phase have to be formed, in analogy to the nucleation barrier
in precipitation hardening (see section 6.4.4). This nucleation barrier is so
large in stabilised zirconium oxide that it cannot be surmounted without an
additional driving force.

The necessary driving force can be provided by external stresses. If a hy-
drostatic tensile stress is superimposed, energy would be required to deform
the tetragonal phase elastically. This increases the energy of the tetragonal
phase compared to the less dense monoclinic phase, thus reducing the nucle-
ation barrier. External stresses, for instance near a crack tip, can thus induce
the phase transformation. Residual stresses developing during cooling can also
reduce the nucleation barrier by this mechanism. These residual stresses in-
crease with increasing grain size so that the grain size must be sufficiently
small to avoid the phase transformation during cooling.

The influence of the grain size on the transformation process can be
explained with a simple model [46]: Consider a corner inside a grain
of tetragonal zirconium oxide, embedded in a matrix with a different
coefficient of thermal expansion. Due to thermal stresses, a stress singu-
larity will form in this edge, and the stresses near the edge will thus be
very large. In a certain region near the corner, the stress is sufficiently
large to initiate the phase transformation. To grow, this transformed
region must be sufficiently large. The size of the region in which the
necessary stress is reached is proportional to the grain size. Therefore,
the transformation can occur during cooling in large grains, but not in
small ones.

10 Additionally, compressive stresses can be imposed during cooling to favour the
tetragonal phase energetically.
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Fig. 7.22. Grain structure of zirconium oxide (light-grey) in aluminium oxide (dark-
grey). The horizontal bar has a length of 1 µm. Courtesy of CeramTec ag, Plochingen,
Germany

In the case of partially stabilised zirconium oxide (partially stabilised zirconia,
psz), the amount of the added oxide is so large that the material is still in the
single-phase cubic region at the sintering temperature of about 1800℃. By
rapid cooling, this state is ‘frozen in’. A subsequent heat treatment at about
1400℃ causes the formation of tetragonal precipitates in the cubic matrix.
This method, similar to precipitation hardening of metals (see section 6.4.4),
has the advantage that the size of the tetragonal particles can be controlled
precisely. Maximum strength is achieved if the particle size is slightly below
the critical value described above.

Because strengthening increases linearly with the amount of tetragonal
phase, a ‘fraction’ of 100% of tetragonal phase gives the highest strength.
Zirconium oxide with almost 100% tetragonal phase is called tzp, tetragonal
zirconia polycrystals. In this case, the amount of added oxide must be limited
so that the phase is still tetragonal during sintering.11 The amount must,
on the other hand, not be too small because then the transformation of the
tetragonal grains to the monoclinic state could not be suppressed. Such a
complete stabilisation of zirconium oxide can be accomplished, for example,
by adding 4 wt-% yttrium oxide. By using extremely fine powders and low
sintering temperatures (typically about 1400℃), a small grain size of about
1 µm is ensured to avoid transformation to the monoclinic phase.

tzp is among the ceramics with the highest strength and fracture tough-
ness. It is used, for example, in ceramic hammers or as ceramic cutting edges
in knifes. tzp is not only used as a bulk material, but also as reinforcement in
other ceramics. As an example, figure 7.22 shows aluminium oxide (alumina)
reinforced with zirconium oxide (zirconia) particles, called zirconia-toughened
alumina (zta) [104, 137]. If the size of the zirconium oxide particles is larger
11 Usually, this can not be ensured completely and a small fraction of cubic phase

remains.
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Fig. 7.23. Hampering crack propagation by ductile particles (after [149])

than the critical value or if the compressive stresses during cooling are not
sufficient, the phase transformation can occur during cooling. In this case,
there is no transformation toughening, but the other mechanisms to increase
the crack-growth resistance discussed above (crack deflection, microcracking)
take effect. zta is used, for example, as cutting tool for machining metals.

7.5.5 Adding ductile particles

Ductile particles can cause crack bridging because a crack penetrating them
has to do additional work to deform the particles plastically before they fi-
nally break. This is depicted in figure 7.23. It is reasonable to choose particles
that attract the crack, for example by using particles with a smaller Young’s
modulus. This strengthening mechanism has the main disadvantage that the
ceramic cannot be used at high temperatures because the metallic phase then
looses its strength and will be oxidised when it is reached by the crack tip.
So far, this mechanism is therefore of no technical importance. One possi-
ble application could be in medical engineering where hydroxyapatite (see
section 9.4.4) is frequently used as implant material. The fracture toughness
of hydroxyapatite can be significantly increased by adding ductile platinum
particles [30].
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Mechanical behaviour of polymers

There is a multitude of polymers with widely differing properties, making
them suitable for different applications like rubber tyres, crash helmets, food
packagings, or plastic bags. This multitude is due to the fact that polymers
consist of organic chain molecules whose structure can be controlled within
wide margins (see also chapter 1).

As already discussed in section 1.4, we distinguish amorphous and semi-
crystalline thermoplastics, elastomers and duromers. All explanations given
in the following relate to amorphous thermoplastics, unless noted otherwise.
The peculiarities of the other groups are discussed separately.

The mechanical properties of amorphous thermoplastics are mainly deter-
mined by the intermolecular bonds between the chains, not by the covalent
bonds within them. These intermolecular bonds are, depending on the chem-
ical composition, van der Waals, dipole, or hydrogen bonds. The different
strengths of these bonds cause the wide spectrum of mechanical properties.
In addition, the geometry of the molecules is important because they have to
move against each other, especially so in plastic deformation.

The bonds between the chains are weaker than covalent or metallic bonds
and may be overcome by thermal activation even at room temperature.
Thus, as we will see in detail in section 8.1, polymers are in their high-
temperature regime even at room temperature. Their deformation is therefore
time-dependent, and it is not always easy to distinguish elastic and plastic
deformations. The mechanical properties of polymers are the subject of sec-
tions 8.2 to 8.4. Methods to improve the mechanical properties of polymers
are discussed subsequently. The chapter closes with a brief discussion of the
sensibility of polymers against environmental influences.

8.1 Physical properties of polymers

8.1.1 Relaxation processes

Amorphous thermoplastics consist of covalently bonded chain molecules, bond-
ed to each other by intermolecular interactions. At low temperatures (of a few
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Fig. 8.1. Sketch of the potential energy of the bond between two carbon atoms in
the backbone (after [79]). Only the hydrogen atoms of the two middle carbon atoms
are shown

kelvin), the chain molecules are fixed in their positions, and the intermolecular
bonds are strained under mechanical loads.

At elevated temperatures, the behaviour of polymers is much more com-
plex because thermally activated rearrangements and movements within and
between the chains can occur, which are frequently reversible. These processes
are mainly responsible for the physical and mechanical properties of polymers.
They are called relaxation processes and are the topic of this section. Their
name is due to the fact that they may cause a relaxation i. e., a reduction of
applied stresses, as we will see later.

In an amorphous polymer, there are a large number of such relaxation
mechanisms which are determined by the chemical structure of the polymer
and are active at different temperatures. In the following, we will discuss some
examples.

A simple example of a relaxation process is a rotation along the axis of
a molecular chain, for example, in polyethylene. Although a single C-C bond
can rotate freely, this is not true for the bond along the molecular chain be-
cause the attached hydrogen atoms and the chain itself impede the rotation.
Figure 8.1 schematically shows the energy of the bond as a function of the rota-
tional angle in a molecular chain. As can be seen, the energy is smallest when
the hydrogen atoms on neighbouring carbon atoms are in opposite positions.
In addition, there are two local minima at rotational angles of ±120° with
slightly larger energies. A rotation from one of the local minima to another
thus needs to overcome an energy barrier and may be thermally activated.

A single rotation along the chain of a polymer as shown here, cannot
occur in a polymer because a large chain segment would have to be moved as
a whole. This is not possible because neighbouring molecules would get in the
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Fig. 8.2. Rotation of carbon atoms in a
chain molecule (crankshaft relaxation, af-
ter [79])

way. However, it is possible to simultaneously move several atoms along the
chain as shown in figure 8.2 for the example of a polyethylene molecule. Due to
its shape, this process with four moving atoms is called crankshaft relaxation.
The energy barrier of this rotation is about 60 kJ/mol [79]. If the thermal
energy is sufficiently large, rotations like this can occur. In polyethylene, this
is the case at temperatures above −100℃.

If a component made of polyethylene is loaded mechanically, the molecules
can rearrange with this mechanism and thus enable an additional deformation.
Due to the thermal activation necessary for this, the process requires some
time. Therefore, the deformation is time-dependent. This will be described
further in section 8.2.

Side groups along the chain can also cause relaxation processes. Poly-
methylmethacrylate (pmma, see figure 1.23, page 27) provides an example.
The monomer of pmma contains one methyl group CH3 directly bonded to
the chain (often called the ‘backbone’) and a COOCH3 group, comprising a
carboxyl group (COO) and another methyl group. The methyl group bonded
to the carboxyl group is rather mobile, and its rotation can be thermally acti-
vated at temperatures of only 6 K. The other methyl group directly attached to
the main chain is impeded in its movement by the other neighbouring groups
and starts to become mobile only above approximately −170℃. The carboxyl
group is even larger and is also constrained in its movement by its methyl
group. Furthermore, it is polar so that electrostatic interactions help to fix
it in its position. A relaxation of a side group additionally bonded by dipole
or hydrogen bonds can only occur if the temperature is sufficiently large to
overcome this binding energy and to move the side group to another position.
The carboxyl group of pmma thus can only relax at temperatures above 20℃.

The single relaxation processes of a polymer are frequently denoted
with Greek letters. The α relaxation is the relaxation process with
the highest temperature, the one with the next-lower temperature is
called β relaxation and so on. This is a bit confusing because physically
identical relaxation processes in different polymers may bear different
names.

Larger chain segments of about 50 units may also become mobile at suffi-
ciently large temperatures. Thermally activated collision processes between
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the atoms increase the distance between the chains and may enable these
larger segments to slide past each other. This larger mobility causes the so-
called glass transition described in the next section.

In crystalline regions, relaxation processes may also occur. Many of the
mechanisms described above, for example the crankshaft relaxation, are not
possible in crystalline regions due to the larger packing density. Instead, the
mobility of free chain ends or rearrangements of faults in the lattice may
provide relaxation mechanisms.

8.1.2 Glass transition temperature

The physical properties of a polymer are different in the amorphous and crys-
talline regions and are therefore covered separately. The glass transition tem-
perature discussed in this section is only relevant for the amorphous regions.

To understand the glass transition temperature, we need to look at the
so-called specific volume, the reciprocal of the density. Figure 8.3 shows the
dependence of the specific volume on the temperature for an amorphous poly-
mer. At low temperatures, the specific volume grows with the temperature
because of thermal expansion as explained in section 2.6 for the case of met-
als and ceramics. A temperature raise is accompanied by an increase in the
energy of the molecules, widening the bonds between the chains. At a certain
temperature, the glass transition temperature (or glass temperature for short)
Tg, the curve of the specific volume has a kink and the specific volume grows
more strongly with temperature than before. This additional volume is called
free volume.

Microscopically, this larger increase implies that the distance between the
molecular chains grows more strongly than at small temperatures. This is
again due to thermal activation which is now large enough to overcome the
intermolecular bonds and increase the mobility of the molecules. In this con-
text, it is frequently said that the bonds ‘melt’ when the glass temperature is
reached. This does not mean that the bonds between the chains are broken;
but the thermal energy is sufficient that rearrangements of the molecules are
possible without an external stress, momentarily breaking and re-forming the
bonds between the chains. The activation energy for this process is completely
provided by thermal activation. The situation is analogous to the melting of
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Fig. 8.4. Movement of a chain molecule
through a ‘tunnel’ formed by the surround-
ing molecules (after [9])

a solid. At temperatures beyond the melting temperature, strong interatomic
bonds still exist, otherwise the material would be a gas, not a liquid. But
thermal activation allows to break and re-form these bonds frequently enough
for the atoms to be able to move freely past each other. Similarly, the ther-
mal movement of the chain molecules is less restricted by intermolecular bonds
above the glass temperature. Increasing the temperature, and thus the kinetic
energy, also increases the distance between the molecules strongly.

The mobility of the chain molecules is much larger than below the glass
temperature, enabling the molecules to relax along large chain segments as
described in the previous section. The viscosity at a temperature above the
glass temperature is nevertheless much larger than in a molten metal, for the
molecules are entangled, and sliding them past each other is geometrically
constrained. For the polymer to behave like a liquid, molecules that were ini-
tially close have to be able to separate by a large distance i. e., a molecule
must be drawn out of the assembly of the other molecules. This can be visu-
alised by imagining the molecule to move (or ‘reptate’ like a snake) through a
‘tunnel’ formed by the surrounding molecules (see figure 8.4). Because of the
complex shape of the tunnel, the molecule must be able to rotate along the
covalent bonds on the backbone, for otherwise the movement is geometrically
constrained. Due to the increase in the free volume with temperature, the
mobility of the molecules increases with temperature and the viscosity thus
decreases.

8.1.3 Melting temperature

The properties of the crystalline regions are clearly distinct from those of the
amorphous parts. In crystalline regions, the chain molecules are more strongly
bound. On the one hand, this is due to the higher density of intermolecular
bonds, on the other hand, the bond lengths are smaller because the chain
molecules are more regularly arranged. This denser packing hinders most of
the relaxation processes described in section 8.1.1. Therefore, the simple spring
model of the atomic bond that was explained in section 2.3 is valid to higher
temperatures than in the amorphous regions.
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Fig. 8.5. Dependence of the glass and melting temperature as well as the mechanical
behaviour of a crystalline or semi-crystalline polymer on the degree of polymerisation
(after [27]). At very low degrees of polymerisation, complete crystallinity is possible

If the thermal energy is of the order of the binding energy, the intermolec-
ular bonds melt when the temperature is raised, as described above, and
the crystalline regions become liquid. The melting temperature and the glass
transition temperature are both characterised by the thermal energy being
sufficiently large to enable rearrangements of the chain molecules which are
held together by their intermolecular bonds. If, upon cooling, the temperature
falls below the melting temperature, the molecules rearrange from a irregular
to a regular, crystalline structure. There is no such rearrangement in the amor-
phous regions at the glass temperature. This rearrangement in the crystalline
regions releases energy as heat, resulting in a latent heat at the melting tem-
perature. It is mainly the chemical composition of a polymer that determines
whether it becomes crystalline or amorphous on cooling as we will discuss
further in section 8.5.2.

Because long-chained polymers can never be fully crystalline (see sec-
tion 1.4.2), the properties of amorphous and crystalline regions are super-
imposed in semi-crystalline polymers. On heating, the glass temperature is
reached first and the melting temperature second. Frequently, the glass temper-
ature is about 60% of the melting temperature (measured in kelvin) because
the bonds in the crystalline regions are stronger due to their more favourable
geometry.

The values of the melting and the glass temperature also depend on the
length of the chain molecules (the degree of polymerisation). This can be
understood because the free ends of a chain molecule are more weakly bound
and thus more mobile. Short-chained polymers with a large number of free
ends thus increase the free volume more strongly than large-chained ones,
easing the rearrangement of the molecules. Figure 8.5 depicts the dependence
of the melting and the glass temperature on the degree of polymerisation. In



www.manaraa.com

8.2 Time-dependent deformation of polymers 263

a technical polymer, the molecules are never all of the same length. Therefore,
its melting temperature is not as distinctly defined as it is in a pure metal.

The degree of polymerisation also has an influence on the mechanical prop-
erties – with increasing chain length, amorphous thermoplastics become more
viscous even above the glass temperature. This is due to the folding and en-
tanglement of the single molecules (see section 1.4.2), which makes sliding
the molecules past each other the more difficult, the longer the molecules
are. In section 8.3.1, we will see that this entanglement can even cause rub-
bery behaviour. Above their glass, but below their melting temperature, semi-
crystalline polymers are ductile; a fact discussed in more detail in section 8.4.2.

Duromers and elastomers also exhibit a glass transition temperature with
melting of the non-covalent intermolecular bonds, with localised sliding of
the molecules being consequently easier. However, due to the covalent bonds
between the molecules, it is not possible to pull single molecules out of the
molecular network. Thus, these materials never become viscous liquids, but
always remain solid. It is not possible to heat them to temperatures where the
covalent intermolecular bonds are molten because they will decompose before.

8.2 Time-dependent deformation of polymers

Young’s modulus of polymers is about two orders of magnitude smaller than
that of metals and ceramics (see table 2.1), whereas the yield strength is
smaller by only about one order of magnitude. Therefore, polymers can exhibit
much larger elastic strains without deforming plastically. When components
made of polymers are designed, this large elastic deformation has to be taken
into account.

Both the elastic and the plastic behaviour of polymers are time-dependent
even at room temperature; polymers are thus viscoelastic and viscoplastic.
In this section, we discuss the time-dependent deformation behaviour phe-
nomenologically and explain how thermal activation of relaxation processes
causes the time-dependence of deformation.

8.2.1 Phenomenological description of time-dependence

If the stress in a polymer is raised abruptly from zero to a value σ clearly
below the yield strength and then kept constant, the polymer answers with a
time-dependent strain ε(t). The strain increases instantaneously to a value ε0

(see figure 8.6), as in the case without time-dependent elastic behaviour, but
then it further increases with time. We define the time-dependent Young’s
modulus at constant stress Ec(t) as

Ec(t) =
σ

ε(t)
. (8.1)
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for a viscoelastic material

Often, the time-dependent Young’s modulus is denoted as creep modulus1.
The deformation, and thus Ec(t), approaches a constant value if the loading
time becomes large. If the load is removed after a time t0, the strain decreases
instantaneously by the time-independent strain ε0 and then reduces slowly to
zero. The retardation time τret is defined as the time needed to reduce the
time-dependent part of the strain by a factor 1/e (figure 8.6).

At small strains, polymers are linear viscoelastic: An increase in stress
causes a proportional increase in strain. At larger strains, this is not true
anymore.

If we prescribe the strain instead of the stress of a component, the stress
in it decreases with time (stress relaxation). Similar to the retardation pro-
cess, the stress increases instantaneously, but then it decreases with time and
approaches a constant value. Similar to the creep modulus, we can define the
relaxation modulus

Er(t) =
σ(t)
ε

(8.2)

and the relaxation time τrel. The relaxation modulus and the relaxation time
can never be larger than the creep modulus and retardation time, respectively.
This is discussed further in exercise 25.

Phenomenologically, linear viscoelastic behaviour can be described using
a simple mechanical model, called the Kelvin model or, occasionally, Voigt
model. In this model, the behaviour of the material is described by a paral-
lel connection of a spring element and a dashpot (or damping) element (see
figure 8.7(a)). A constant load strains the spring, but the friction within the
dashpot element provides a large initial resistance to the strain, causing the
strain to increase with time. This model describes the behaviour of a purely
viscoelastic material.
1 The name ‘creep modulus’ is somewhat misleading because it denotes viscoelastic

behaviour, although the term ‘creep’ is usually used for viscoplastic behaviour
only.
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(a) Kelvin model (b) Four-parameter model

Fig. 8.7. Mechanical models of viscoelastic and viscoplastic materials, built as
systems containing spring and dashpot elements

As we already saw, in reality, the behaviour of a polymer is never purely
viscoelastic. There is always an instantaneous elastic contribution to the de-
formation (without any time-dependence) and, at elevated temperatures, a
plastic deformation which is irreversible. Similar to the elastic properties, the
plastic properties of a polymer also strongly depend on time. Thus, polymers
are viscoplastic i. e., they creep.2

This behaviour can be described using the so-called four-parameter model,
containing a spring and a dashpot element in series with a Kelvin model
(see figure 8.7(b)). The stiffness and the damping parameters of the elements
are temperature-dependent. At small temperatures (well below the glass tem-
perature), the elastic behaviour dominates, rendering the material essentially
linear-elastic and in most cases brittle. If the temperature is raised, the be-
haviour is viscoelastic; if it is raised further (clearly beyond the glass tempera-
ture), the material becomes a viscous liquid as discussed in section 8.1.2, with
the dashpot element determining its behaviour.

This simple model is only qualitatively, but not quantitatively, correct.
It also ignores the stress-dependence of the deformation: If the stress is suf-
ficiently large, a polymer can deform plastically even below the glass tem-
perature. In other words, as in the case of metals, the material has a yield
strength.

The time-dependence is important for technical applications. Figure 8.8
shows isochronous stress-strain curves of polymethylmethacrylate (pmma)
with a glass temperature of about 100℃. These curves are obtained in re-
tardation experiments, where the strain in a specimen kept at constant stress
after a fixed loading time is measured. Different from ‘ordinary’ stress-strain
curves, each value of the stress requires its own experiment. The deformation
becomes larger the longer the loading time is.

In the diagram, we can see the linear viscoelastic region at small strains,
with stress and strain being proportional, but with the slope of the curve
being time-dependent. This slope is the creep modulus defined above, which
2 In this book, we use the term ‘creep’ only for the time-dependent plastic deforma-

tion. In the context of polymer science, the time-dependent elastic deformation
is also frequently called ‘creep’, but this is not done here, except for using the
term ‘creep modulus’. Creep (i. e., viscoplasticity) can also occur in metals and
ceramics at high temperatures and will be discussed in chapter 11.
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Fig. 8.8. Isochronous stress-strain curves of amorphous polymethylmethacrylate
with a glass temperature of approximately 100℃ (after [41])

decreases with increasing loading time. At strains larger than approximately
0.5%, we observe a deviation from linear behaviour. The material becomes
non-linear viscoelastic and, at even larger strains, flows viscoplastically. If the
strain is increased further, plastic behaviour dominates, and the slope of the
curves decreases. If the loading time is increased in this region, the strain
increases proportionally i. e., the strain rate is almost constant as a function
of stress. Viscoelastic effects can occur at temperatures well below the glass
temperature (in this case, 80℃ below Tg) and thus have to be considered
when designing with polymers.

Curves similar to those in figure 8.8 are obtained when the strain is kept
fixed instead of the stress. In this case, the stresses decrease with time (relax-
ation) as explained above. For technical applications, retardation curves are
usually more important because in most cases the load on the component is
known and it has to be checked whether the permissible maximum strain is
exceeded.

The time-dependence of deformation renders the parameters measured
in simple tensile tests (see section 3.2) much less important than they are in
metals, for instance. Although they do describe the behaviour at short-termed
loads, time-dependent parameters – obtained, for example, from isochrones –
have to be used to design polymer components. Viscoelastic and viscoplastic
effects can be neglected only if strains and loading times both are small.

8.2.2 Time-dependence and thermal activation

Relaxation processes, explained in section 8.1.1 above, play an important role
in the deformation of polymers. As they are thermally activated at sufficiently
high temperatures, the probability of a relaxation process increases exponen-
tially with the temperature and also with the time available for the process.
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To discuss this in detail, we consider a segment of the polymer chain
that has to overcome an energy barrier Q of a relaxation process (see sec-
tion 8.1.1) to slide past a neighbouring segment and enable the deformation.
The probability P to overcome this barrier by thermal activation is, according
to appendix C.1, P ∝ exp(−Q/kT ), with the temperature T and Boltzmann’s
constant k.

Analogous to section 6.3.2, an external stress σ eases overcoming the bar-
rier. If this stress acts on a molecular segment of cross section A and if the
width of the barrier is d∗, the external stress does the work W = σAd∗ when
the segment overcomes the barrier. The probability to overcome the barrier
is thus

P+ ∝ exp
(
−Q− σAd∗

kT

)
.

If the barrier is overcome, the back-reaction can also occur. However, it is less
probable than the forward-reaction because work against the external stress
has to be done. Its probability is

P− ∝ exp
(
−Q + σAd∗

kT

)
.

The total probability to overcome the barrier is the difference of both contri-
butions:

P = P+ − P− ∝ exp
(
− Q

kT

) [
exp

(
σAd∗

kT

)
− exp

(
−σAd∗

kT

)]
.

From this, we obtain the strain rate (using sinhx = (ex − e−x)/2)

ε̇ = ε̇0 exp
(
− Q

kT

)
2 sinh

(
σAd∗

kT

)
. (8.3)

Here, ε̇0 is a constant parameter.
In the following, we will use this equation to study the time-dependence

of the elastic and plastic behaviour.

Time-dependence of elastic deformation

For small stresses, we can use the approximation sinhx ≈ x in equation (8.3)
so that the strain rate is proportional to the applied stress. In this case, the
behaviour is linear and viscous. As stresses are small, the deformation is not
plastic, but elastic, for there is a restoring force corresponding to the spring ele-
ment in figure 8.7(a), whereas equation (8.3) describes the dashpot element of
the Kelvin model. The behaviour is thus linear viscoelastic. At larger stresses,
deviations from linearity occur, although the behaviour is still viscoelastic.

From what we discussed so far, it seems plausible to assume that the
behaviour of a polymer at small temperatures and large times is similar to
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that at larger temperatures and smaller times. In fact, it is possible to find
conversion factors, allowing to extrapolate the creep or relaxation modulus
from one temperature to another. This will be discussed in a similar way in
section 11.1 for the creep of metals.

To discuss this conversion in detail, we consider the creep modulus
i. e., the time-dependent Young’s modulus at constant stress. We as-
sume that it was measured at a temperature T1 with a loading time t1.
According to the ideas presented above, the creep modulus at temper-
ature T2 should have the same value if we change the loading time
to t2.

If the viscoelastic behaviour is dominated by a relaxation process
with activation energy Q, the value of t2 can be calculated easily: At
constant stress, the strain rate is given by equation (8.3):

ε̇ = A exp

„
− Q

kT

«
. (8.4)

For the strain to be identical at a different temperature, the product
of loading time and strain rate must be constant:

t1ε̇1 = t2ε̇2 V
t1
t2

=
exp

“
− Q

kT2

”
exp

“
− Q

kT1

” = exp

»
−Q

k

„
1

T2
− 1

T1

«–
.

(8.5)

If the activation energy Q is known, this equation can be used to calcu-
late t2 directly. Otherwise, one additional experiment at temperature T2

(or another temperature) is required to determine the activation energy.
In deriving this result, we assumed that the viscoelastic properties

are determined by a single activation energy. In real-world polymers,
this is usually not the case. Nevertheless, the equation can be used
approximately as long as the same relaxation processes are involved.
It is not possible, however, to extrapolate to temperatures so low that
some relaxation processes do not occur, or to temperatures so high that
additional mechanisms are activated.

Near the glass temperature and at larger temperatures, this con-
version between temperature and time is not valid anymore because
not the relaxation processes, but the sliding of chain molecules past
each other determines the elastic behaviour. Although this process is
thermally activated as well, the dependences are more complicated be-
cause raising the temperature also increases the free volume and thus
has an additional effect on the movement of the molecules. Therefore,
the conversion factor changes to

t1
t2

= exp
ln 10 · C1(T2 − T1)

C2 + (T2 − T1)
, (8.6)
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with C1 and C2 being constants that are approximately the same
for all amorphous polymers. If we choose T1 = Tg, their values are
C1 = 17.5 und C2 = 52K. This equation is called Williams-Landel-
Ferry equation, or wlf-equation for short. If we plot the creep mod-
ulus at temperature T1 versus time in a double-logarithmic scale,
a change to temperature T2 shifts the whole curve horizontally by
aT = log(t1/t2) = log(t1/h) − log(t2/h). aT is frequently called the
shift factor.

Time-dependence of plastic deformation

At all technically relevant temperatures, polymers deform by creep. To de-
scribe the time-dependence of plastic deformation, we again exploit equa-
tion (8.3). In contrast to the viscoelastic deformation, there is no restoring
force in viscoplasticity. Equation (8.3) is thus used to describe the dashpot
element connected in series in the four-parameter model from figure 8.7(b).

For large stresses, we can use the approximation 2 sinh x ≈ expx in equa-
tion (8.3). This yields

ε̇ = ε̇0 exp
(
− Q

kT

)
exp

(
σAd∗

kT

)
. (8.7)

A simple form of this equation is obtained by solving for σ/T :

σ

T
=

k

Ad∗

(
Q

kT
+ ln

ε̇

ε̇0

)
. (8.8)

If we plot the quotient of the stress σ in the polymer and the temperature
versus the logarithm of the strain rate, points at constant temperature should
fall onto a common line. Figure 8.9 plots this for polycarbonate, thus confirm-
ing our considerations. This kind of plot is called Eyring plot. If there is more
than one type of obstacle, the slope of the curve is not constant anymore.
If, for instance, one type of obstacle is dominant up to one temperature, but
another is more important at higher temperatures, the Eyring plot contains
a kink because both obstacles differ in the activation volume Ad∗.

8.3 Elastic properties of polymers

8.3.1 Elastic properties of thermoplastics

The elastic behaviour of polymers is mainly determined by the intermolecular
bonds between the chain molecules, not by the covalent bonds within. For
elastomers and duromers, the covalent bonds linking the chains are also rel-
evant. In the following, we will start by discussing the elastic properties of
thermoplastics and afterwards study the influence of cross-linking.
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Fig. 8.9. Eyring plot of polycarbonate (after [97])

Figure 8.10(a) schematically shows the temperature dependence of Young’s
modulus in an amorphous thermoplastic, measured at a typical, constant load-
ing time (for example, one second). Increasing the loading time would cause
a reduction of Young’s modulus. As can be seen from the figure, the stiffness
strongly decreases at temperatures close to the glass temperature. The elastic
behaviour will therefore be discussed separately in the temperature regimes
below and above the glass temperature.

Energy elasticity

The elasticity of thermoplastics below their glass temperature is mainly due
to the energy needed to displace atoms from their equilibrium position. On
unloading, the atoms return to their original position which has the lowest
energy. For this reason, this behaviour is called energy elasticity. It is mostly
the weak, intermolecular van der Waals, dipole, or hydrogen bonds that are
strained. The covalent bonds do not contribute significantly to the elastic
properties. Their stiffness is so large that they nearly cannot be strained elas-
tically as long as the other bonds can deform. Only if the chain molecules
are aligned in parallel, as in polymer fibres like aramid (kevlar), the covalent
bonds determine Young’s modulus which can then take very large values of
up to 440 GPa.

We already saw in section 2.6 that Young’s modulus is approximately pro-
portional to the melting temperature and thus to the binding energy. For
amorphous polymers, the relevant temperature is the glass transition temper-
ature because this is the temperature where the bonds melt. The rather low
values of the glass temperature (listed in table 1.3) thus also explain why
Young’s modulus of polymers is smaller than for the other material classes.

The strong decrease of Young’s modulus at the glass temperature (see
figure 8.10(a)) will be discussed in the next section. More interesting in the



www.manaraa.com

8.3 Elastic properties of polymers 271

E

(log)
glass transistion

secondary transition

energy elastic entropy elastic

Tg

T

0

v
is

c
o
u
s

(a) Amorphous thermoplastics

glass transition

secondary transition

energy elastic

amorphous regions:

entropy elastic,

crystalline regions:

energy elastic

Tg Tm

T

0

v
is

c
o
u
s

E

(log)

(b) Semi-crystalline thermoplastics

glass transition

energy elastic entropy elastic

Tg

T

0

E

(log)

(c) Elastomers

glass transition

energy elastic

Tg

T

0

E

(log)

(d) Duromers

Fig. 8.10. Temperature dependence of Young’s modulus in different types of poly-
mers (after [19]). Because a logarithmic scale is used, the reduction of Young’s
modulus appears to be smaller than it is in reality. More explanations in the text

present context is the fact that even below the glass temperature, there may
be temperature values at which Young’s modulus decreases markedly by about
a factor of approximately 2. These so-called secondary transitions are caused
by relaxation processes which enable a limited mobility of the chain molecules
and thus cause a stress relaxation by movement of molecule segments. Because
such rearrangements always require overcoming some activation energy, they
become more probable if the loading time increases. They are responsible for
the viscoelastic behaviour of polymers.

As the activation energies of different relaxation processes differ, their
relaxation time also differs. This is the reason why the simple spring-and-
dashpot model from section 8.2.1 cannot be used to make quantitative predic-
tions. This would require coupling several such elements [97] with relaxation
times chosen to fit their respective processes.

We already saw in section 8.1.1 that the activation energy of some relax-
ation processes is so low that it can be overcome by thermal activation already
at temperatures as low as a few kelvin. At room temperature, their relaxation
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FF

Fig. 8.11. Elastic deformation of a polymer above the glass temperature. The
molecules are straightened between the entanglement points

times are thus very short (of the order of 10−8 s). Relaxation is almost instan-
taneous so that these processes contribute to the initial deformation of the
polymer when the load is applied.

If the stressed polymer has deformed viscoelastically by relaxation, the
deformed configuration has a higher energy than the initial one. Upon unload-
ing, the molecules return to their initial positions. This process again requires
thermal activation and is therefore time-dependent as well.

Entropy elasticity

If the temperature exceeds the glass temperature, Young’s modulus strongly
decreases. From what has been said so far, it could be surmised that the poly-
mer should deform like a viscous liquid if heated beyond the glass temperature,
exhibiting viscosity, but no elasticity. This, however, is not the case.

The reason for this is the strong entanglement of the chain molecules. As
discussed in section 1.4.2, the chain molecules are strongly folded. Different
chain molecules are thus ‘tied together’ like a knot in many places. On load-
ing, the molecules are straightened. Directly above the glass temperature, they
cannot slide past each other because this movement is hampered by the sur-
rounding molecules (see figure 8.11). The molecules thus straighten between
their entanglement points. During sliding, energy barriers have to be overcome
because the chain molecules are straightened, rotate, and because side groups
have to move. Due to the higher temperature and the larger distance between
the molecules, this process is much easier at temperatures above the glass
temperature. The deformation of the material is still time-dependent due to
the required thermal activation.

If the load is removed, there is no force on the straightened molecules,
so there seems to be no reason why they should return to their initial posi-
tion. Because of the stochastic thermal movements of the molecules in the
polymer, the molecule will probably return from the straightened to a folded
geometry because there are a lot more possibilities for a folded molecule than
for a straightened one. The arbitrary thermal collisions with the surrounding
molecules thus fold up the molecule again. Thus, there is a thermodynamic
driving force because the entropy of the molecule is larger in the folded than
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in the straightened state. This behaviour is therefore called entropy elasticity.
The entanglement points between the chain molecules remain in a fixed posi-
tion on the molecules during elastic deformation so that the molecule returns
to its initial shape. In contrast to the deformation below the glass tempera-
ture, it is not the smaller energy of the initial configuration that drives the
return to this form, but its larger entropy. As before, the movement of the
molecules is time-dependent.3

The viscoelasticity of amorphous polymers is most pronounced near the
glass temperature in the transition regime between energy-elastic and entropy-
elastic behaviour. At lower temperatures, only smaller parts of the molecules
can slide past each other as explained above. As we approach the glass tem-
perature, more and more sliding processes become possible. As the sliding
processes can be more easily thermally activated the higher the temperature
becomes, the relaxation time decreases. At temperatures well above the glass
temperature, relaxation times are small, and the system returns quickly to its
initial state.

So far, we only considered amorphous thermoplastics. Semi-crystalline ther-
moplastics show a different behaviour as shown in figure 8.10(b). Due to the
stronger intermolecular bonds in the crystalline regions, their elastic stiffness
is usually larger than that of amorphous polymers. The decrease in Young’s
modulus on reaching the glass temperature is smaller because only the amor-
phous regions become entropy-elastic, whereas the crystalline regions remain
in the energy-elastic state. The cohesion between the crystalline and the amor-
phous regions is ensured because most chain molecules extend over several
crystalline and amorphous regions.

8.3.2 Elastic properties of elastomers and duromers

Elastomers and duromers are characterised by additional covalent cross-links
between the chain molecules. In the energy-elastic regime, these additional
bonds do not influence the elastic properties significantly; Young’s modulus
only increases slightly.

At temperatures above the glass temperature, the additional bonds become
important. Elastomers are entropy-elastic at these temperatures. The covalent
bonds between the molecules increase the linking between them compared to
thermoplastics where molecules are linked by geometric entanglement only.
These additional links cannot be broken during sliding of the molecules and
thus increase the effect of entropy elasticity. With increasing number of cross-
links, the covalent bonds are loaded more heavily during elastic deformation so
that Young’s modulus increases with the cross-linking density as can be seen
3 Above the glass temperature, there is always plastic deformation as well. If the

loading time is sufficiently short, the plastic strain rate is small enough to be
neglected; at larger loading times, it has to be taken into account (see also sec-
tion 8.4.1).
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from figure 8.10(c). Because the restoring force in entropy-elastic deformation
is the entropy, which becomes more important the larger the temperature
is (see equation (C.3)), Young’s modulus of elastomers often increases with
increasing temperature.

Contrary to metals and ceramics, the elastic strains in elastomers can
become very large and attain values of several hundred percent. The reason
is that the molecules are straightened during deformation, but the cross-links
prevent the molecules from sliding past each other and thus inhibit plastic
deformation. Upon unloading, entropy-elasticity completely restores the initial
arrangement of the molecules. This behaviour is called hyperelasticity.

During deformation of hyperelastic materials, large strains of 100% or
more can occur. The material behaviour is strongly non-linear. There-
fore, the theory of large deformations has to be used to describe the
material behaviour (see section 3.1).

The basis of the description is the energy of the deformation: Be-
cause it is elastic (i. e., reversible), energy is stored in the material and
can be regained on unloading. Hyperelastic materials can therefore be
described by specifying the energy density as a function of strain. The
stress in the material can be calculated as the derivative of the energy
density with respect to the strain. This description is useful for two
reasons: On the one hand, the energy density in the material can be
calculated using methods of thermodynamics, on the other hand, it en-
sures that the stored energy does not depend on the material history,
but only on the current state of deformation. This is necessary because
hyperelastic processes do not dissipate energy; it would be difficult to
accomplish by defining a stress-dependent Young’s modulus.

If the cross-linking density of a polymer is increased further, the entropy-
elastic behaviour vanishes nearly completely because the large number of cross-
links prevent the straightening of the molecules. For this reason, duromers
show only a small decrease of Young’s modulus with temperature (see fig-
ure 8.10(d)) caused by relaxation processes. They are energy elastic even above
the glass temperature.

Table 8.1 lists the magnitude of Young’s modulus for the different polymer
groups as a function of their cross-linking density. This quantity is normalised
by assigning a value of 1 to diamond in which all atoms contribute to the
cross-linking.

8.4 Plastic behaviour

Polymer elasticity is determined by the reversible deformation of the chain
molecules as we saw in the previous section. Polymers can also deform plas-
tically, with chain molecules sliding past each other over large distances as
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Table 8.1. Cross-linking density and Young’s modulus of different types of polymers
(cf. section 1.4.2)

type of material cross-linking density E/GPa

thermoplastics 0 0.1 . . . 5 (for T < Tg)
elastomers 10−4 . . . 10−3 0.001 . . . 0.1 (for T > Tg)
duromers 10−2 . . . 10−1 1 . . . 10

diamond 1 1 000

sketched in figure 8.4 on page 261. The plastic behaviour of polymers strongly
depends on the temperature because obstacles have to be overcome by ther-
mal activation and because the size of the ‘tunnels’ in which the molecules
move is determined by the specific volume (see section 8.1.2).

As in the previous section, we start by discussing amorphous thermoplas-
tics and afterwards discuss how things change in semi-crystalline thermoplas-
tics. Elastomers and duromers only allow for a small amount of plastic defor-
mation because the cross-links prevent molecule sliding as explained above.
Elastomers used above their glass temperature can be deformed with large
elastic strains instead; duromers are brittle, with the covalent bonds between
the chain molecules breaking in brittle failure.

8.4.1 Amorphous thermoplastics

We start this section by discussing the plastic behaviour of amorphous ther-
moplastics. The stated temperature regions are, due to the time-dependence
of plastic deformation, valid for rather large strain rates (with testing times
of a few seconds). Increasing the testing time i. e., decreasing the strain rate,
is equivalent to increasing the temperature (see section 8.2).

Far below the glass temperature

At temperatures lower than about 80% of the glass temperature Tg, the bonds
between the molecules are so strong and the specific volume is so small that
chain molecules cannot move by sliding. On loading, the molecules are straight-
ened viscoelastically. If the load is raised further, as sketched in figure 8.12(a),
brittle failure ensues, mainly breaking the intermolecular bonds.

Slightly below the glass temperature

At temperatures of about 80% of the glass temperature Tg, amorphous ther-
moplastics have a limited ductility (see figure 8.12(b)). At these higher temper-
atures, the mean distance between the chain molecules is larger and enables
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Fig. 8.12. Stress-strain diagrams of an amorphous thermoplastic at different tem-
peratures [9]

them to partially overcome the binding forces, giving the molecules a limited
mobility.

In contrast to metals, polymers do not work-harden because no new ob-
stacles are created when the molecules slide past each other. Heat generated
during deformation causes a local increase in temperature, further easing plas-
tic deformation. This results in a local softening of the material, similar to
a metal with an apparent yield point (see section 6.4.3). Only if the plas-
tic strain becomes larger does some hardening occur because the molecules
become aligned in the direction of the applied stress.

A typical microstructure of an amorphous thermoplastic loaded in tension
slightly below the glass temperature is shown in figure 8.13(a). There are mi-
croscopically small, lens-shaped cavities, called crazes. They have a thickness
of about 1 µm to 10 µm and a diameter of about 10 µm to 1000 µm and are
bridged by fibrils. The fibrils comprise several chain molecules and have a
diameter of approximately 10 nm to 100 nm. Their volume fraction within the
craze is between 10% and 50%. Although the crazes do look crack-like, the
strength of the material is only slightly reduced in this region compared to
the strength of the undeformed material since the chain molecules within the
fibrils are straightened and thus can bear a higher load. The thickness of a
craze is almost independent of the applied stress, but it increases with increas-
ing temperature. If the applied stress is large, a large number of small crazes
form, if it is small, their number is smaller.

Usually, crazes are initiated at surface defects, for example scratches or
impurities. Plastic deformation starts in these regions due to the slight stress
concentration caused by these defects. Because the material softens as ex-
plained above, plastic deformation concentrates in this region, resulting in
a slight local necking. This, in turn, causes the stress state to become tri-
axial and increases the hydrostatic tension. Small cavities with a diameter
of a few nanometres form (figure 8.14). Because of the stress concentration,
the material between the cavities is heavily loaded and deforms plastically,
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Fig. 8.14. Development of a craze by formation of cavities (after [82])

straightening the molecules in this region. Fibrils between the cavities emerge
and a craze is formed.

Despite the load-bearing capacity of the fibrils, there is a stress concentra-
tion near the edges of a craze, easing its further growth. The growth mech-
anism is a so-called meniscus instability: Near the edge of the craze, finger-
shaped extensions evolve and contract, forming new fibrils (figure 8.15). Fibrils
within the crazes initially elongate further by drawing other chain molecules
from the bulk material. Cross-links between the fibrils may form if opposite



www.manaraa.com

278 8 Mechanical behaviour of polymers

(a) (b) (c)

Fig. 8.15. Growth of a craze by a meniscus instability (after [82])
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Fig. 8.16. Deformation of an amorphous thermoplastic under compressive load by
formation of shear bands (after [9])

ends of a chain molecule are drawn into neighbouring fibrils (see figure 8.13(b)).
Finally, fibrils in the centre of the craze break. The craze then grows contin-
uously at constant load, rendering the plastic deformation time-dependent.
This growth can eventually cause fracture of the polymer.

A polymer can deform not only by crazing, but also by forming shear bands,
created at an angle between 45° and 60° [44, 82, 132] to the loading direction
(figure 8.16). Formation of shear bands is especially important under com-
pressive loads. Within the shear bands, large localised plastic deformations
of 100% or more can occur, whereas the deformation is very small outside of
them. Shear band formation has not been studied as closely as crazing. A sim-
ple mechanical model is based on the shearing of chain molecules (figure 8.17).
The shear stress component causes the chain molecules to either straighten or
to form two kinks, resulting in a region with aligned chain molecules. If sev-
eral shear bands converge, a crack can be initiated if one shear band reaches
the already straightened molecules. Because these cracks are now loaded un-
der shear where, according to section 5.1.1, the fracture toughness is larger
(KIIc � KIc), the fracture strain is significantly larger than under tensile
loading.

Several factors determine whether a polymer deforms by shear bands or
crazing. The crucial factor is that crazes, which are initiated by cavitation,
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Fig. 8.17. Formation of a shear band by local stretching and contracting of the
molecule chains (after [35, 132])
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Fig. 8.18. Yield surface of an amorphous thermoplastic that can fail by crazing or
formation of shear bands. If the hydrostatic tensile stress is sufficiently large, crazing
occurs before shear bands (after [92, 132])

can only form under hydrostatic tensile stress.4 The larger the hydrostatic
tensile stress is, the stronger is the tendency for crazing. Figure 8.18 shows
the yield surface of a polymer in plane stress, illustrating this.

The yield strength of polymers generally depends on hydrostatic stress
because hydrostatic compression decreases the specific volume and thus ham-
pers sliding of the molecules. This was already discussed phenomenologically
in section 3.3.3. However, the criteria discussed there did not take crazing into
account.

Apart from the multiaxiality of the stress state, the temperature and the
loading time also play a role in determining the deformation mechanism. Large
strain rates (and small temperatures) make shear band formation more diffi-
cult, thus favouring crazing.
4 Even in a uniaxial stress state, there is a hydrostatic stress according to equa-

tion (3.25): σhyd = σ/3.
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Fig. 8.19. Stress-strain curve of an amorphous thermoplastic closely below the glass
temperature (after [9])

Fig. 8.20. Configuration of a drawn thermoplastic made
of fibre bundles (after [35])

Close to the glass temperature

If the temperature approaches the glass temperature, the chain molecules be-
come more and more mobile and may rearrange on loading. Figure 8.19 shows
the stress-strain curve for this case. After the yield strength has been reached,
the specimen starts to neck in some region because of local softening as ex-
plained in the previous section. If deformation continues, more and more chain
molecules are drawn and straightened in parallel. The more pronounced the
drawing of the chain molecules is, the more are the covalent bonds loaded,
causing a local hardening. This eventually overcompensates for the reduction
in cross section and forecloses further necking in this region. Instead, the neck-
ing region grows until the whole specimen comprises drawn chain molecules.
In this process, strains can be as high as 300%.

By drawing a thermoplastic, it is thus possible to manufacture a material
with chain molecules arranged mainly in parallel. Figure 8.20 schematically
shows the structure of such a polymer: The chain molecules are arranged
in bundles, being parallel within them. The material deforms by sliding of
these fibre bundles. As the fibre bundles are very long, even a small interfacial
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strength between them is sufficient to exploit the strength of the covalent
bonds.5 The force on a fibre bundle can become so large that the covalent
bonds break. The fracture surface splices, exposing the fibre bundles. Fibres
manufactured this way have a very large stiffness and strength compared to
amorphous thermoplastics.

High-strength polymer fibres with drawn chain molecules can be produced
by spinning. Aramid fibres with drawn molecules, for example, can have a
Young’s modulus in fibre direction of up to 450 GPa and an axial tensile
strength of 4700 MPa. These fibres are frequently used in composites (see
chapter 9).

Above the glass temperature

If the temperature significantly exceeds the glass temperature, the chain
molecules can easily slide past each other because the strong increase in the
specific volume (see section 8.1.2) and the melting of the intermolecular bonds
strongly increases the mobility of the molecules. During plastic deformation,
thermoplastics behave similar to highly viscous liquids. Their strength is there-
fore very low.

8.4.2 Semi-crystalline thermoplastics

The bond strength between the chain molecules is higher in the crystalline
regions of a semi-crystalline thermoplastic than in the amorphous regions
because of the smaller bond length. This increases Young’s modulus and also
the strength, even at temperatures above the glass temperature.

Plastic deformation starts by lengthening the amorphous regions (see
figure 8.21(b)). At larger strains, the crystalline regions rotate the chain
molecules into the loading direction (figure 8.21(c)). On further deformation,
the crystalline regions separate into different blocks (figure 8.21(d) and (e)).
In those crystalline regions where the molecules are directed transversely to
the loading direction, the molecules may also rearrange to a vertical orienta-
tion, not by rotating block-wise, but by forming new layers in the vertical
direction.

One problem of semi-crystalline thermoplastics is that impurities and
short-chained molecules are concentrated in the amorphous regions because
they are pushed from the crystalline regions on crystallisation. The interface
between amorphous and crystalline regions is therefore weak and cracks may
initiate there.

Nature frequently uses polymers for load-bearing applications as well
(see also section 9.4.4). One particularly interesting example for a bio-
logical polymer is the silk of spiders or some insects, for example the

5 This will be explained in detail in section 9.3.2 for the case of fibre composites.
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Fig. 8.21. Stages of plastic deformation of a semi-crystalline thermoplastic (after [44,
82])

larvae of the silk moth Bombyx mori [144]. Silks are made of protein
fibres, spun to strings with a diameter between about 2 µm and 10 µm

in spider silk and 10 µm and 50 µm in silk of the silk moth.
Proteins are polymers comprising amino acids as monomers (see

also section 9.4.4). Their structure is similar to polyamide (see fig-
ure 1.23), with the chain ‘R’ consisting of a carbon atom with a side
group. 20 different amino acids commonly exist in nature, resulting in
a huge number of possible protein structures. In contrast to technical
polymers, the structure of a protein i. e., the sequence of its constitut-
ing amino acids, is defined exactly. This sequence determines how the
protein molecule folds up to form a three-dimensional structure.

Most silks are semi-crystalline polymers. Due to the exactly defined
three-dimensional structure, proteins can be aligned exactly in the crys-
talline regions, with different side chains precisely interlocking. The silk
of the silk moth, for example, contains large regions of two alternating
amino acids, one of them (glycin) with a very small, the other (alanine
or serine) with a slightly larger side group. These side groups interlock
as shown in figure 8.22 and thus create crystalline regions with very
high strength.

Silk properties vary strongly, depending on their structure. A single
spider can possess up to seven different types of silks which may be used,
for example, as dragline, for orb-spinning, or to encase prey or the eggs
in an egg cocoon. Each type of silk is produced by its own silk gland.

The mechanical properties of spider dragline silk are especially well-
studied, mostly for the common garden spider Araneus diadematus and
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Fig. 8.22. Crystalline structure of the proteins in the silk of the silk moth. The side
groups of neighbouring molecule chains interlock and cause a high strength. In each
protein, the amino acids glycin and alanine with different side groups alternate. In
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crystalline structure

the golden silk spider Nephila clavipes. Draglines are almost always pro-
duced by a spider during moving, serving as a safety rope for the case
that it falls during climbing. As the dragline must not break, its frac-
ture toughness has to be large. The tensile strength of a dragline can
take values of up to 1.1GPa, approximately one third of that of aramid
fibres. Their fracture strain is about 30%, much larger than in aramid
(with a fracture strain of about 2.7%). Thus, they can absorb large
amounts of energy without breaking. Because it is impossible to per-
form crack propagation experiments with these microscopic specimens,
the fracture toughness is characterised by measuring the energy absorp-
tion to fracture. This can take values of 1.5×108 J/m3, more than four
times higher than in aramid fibres.

Similar silks are also used during orb spinning in those lines that run
radially outwards from the centre. The circumferential lines, forming
the viscid net for capturing prey, are made from a completely different
type. These have to absorb large amounts of energy to prevent prey
hitting the orb from bouncing back and they have to cling to the prey
to retain it. To achieve this, their fracture strain is especially large,
with values of up to 800% and a tensile strength of about 500MPa.
The energy to fracture can be as high as 109 J/m3, larger than in any
other known material.

Spider silks are produced in silk glands in which the constituting
proteins are dissolved in water [85]. During drawing of the thread, the
tensile stress straightens and aligns the molecules although the material
is still dissolved in a liquid. Shortly before it leaves the gland, the crys-
talline regions are arranged as discussed above and water is removed.
Although no chemical reaction occurs at this stage, the silk is not sol-
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uble in water after it has left the gland. How the spider accomplishes
this is not known. To achieve the correct microstructure, it is crucial
that the silk is drawn from the gland because this is required to align
the molecules. Silks cannot be pressed or squirted out of the gland.

The silk of the silk moth has been technically used for thousands
of years. Because of their excellent mechanical properties and also be-
cause of their biocompatibility, spider silks are especially attractive for
many technical applications, for example for wound dressing, sutures,
or in microtechnics. Contrary to the larvae of the silk moth, spiders are
highly territorial and have a strong tendency for cannibalism so that it
is impossible to keep many of them in a confined space. Nowadays, it
is tried to manufacture spider silk biotechnologically, using bacteria to
produce the silk proteins.

8.5 Increasing the thermal stability

The thermal stability of polymers is inferior to that of metals and ceramics.
Near the glass temperature, the stiffness and strength of amorphous thermo-
plastics strongly decrease. Above the glass temperature, viscous flow is the
dominant deformation mechanism in amorphous thermoplastics. Therefore,
amorphous thermoplastics can only be used at service temperatures markedly
below their glass temperature in load-bearing applications because Young’s
modulus strongly decreases before the glass temperature is reached (see fig-
ure 8.10(a)). Semi-crystalline polymers can also be used above their glass
temperature. Their strength is smaller here than below Tg, but their ductility
increases. Elastomers are always used above the glass temperature, because
they are rubbery only in this temperature regime. Duromers can be used be-
low or above the glass temperature, depending on the application. Although
the stiffness is smaller above the glass temperature, they do not flow viscously
above Tg and are thus still serviceable.

Due to this temperature dependence, any means of increasing the thermal
stability are of extreme importance, especially as they usually also increase
the strength and stiffness. One can either increase the glass or, in a semi-
crystalline polymer, the melting temperature, or the volume fraction of the
crystalline regions. This will be discussed in the following.

8.5.1 Increasing the glass and the melting temperature

On reaching the glass temperature, the mobility of the chain molecules be-
comes large enough to allow them to slide past each other, as we saw in sec-
tion 8.1.2. Figure 8.4 on page 261 visualises the movement of a chain molecule
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during sliding. It shows that, in the process, the molecule has to move through
an intricately shaped tunnel formed by the surrounding molecules. If this
movement can be impeded, the glass temperature will increase.

Because of the intricate shape of the tunnel, sliding through it is only
possible if the chain molecule can rotate. One way to reduce the mobility
of the molecules is thus to impede these rotations. In principle, the carbon-
carbon bond can rotate freely (see also section 8.1.1), enabling the molecule to
twist slide through the tunnel. If the rotation is impeded, sliding is impeded
as well.6 There are several ways to achieve this. If, for example, the simple
carbon-carbon bond is replaced by a more complicated structure with less ro-
tatable bonds, the glass temperature increases markedly. Among the polymers
with the highest glass temperature are the polyimides (see table 1.3), with a
molecular backbone formed not from a single carbon chain, but from a link
between a benzene ring, two amide groups, and a carbon chain. As the ring-
shaped part of the backbone is rigid, a rotation is not possible here, and the
mobility is strongly reduced. The more mobile carbon chains between the rings
serve to reduce the brittleness of the material and improve its processibility.

If large side groups are added to the molecule, they can also impede ro-
tation. On the one hand, these side groups cannot penetrate each other and
thus make sliding the molecule through the tunnel formed by the surrounding
molecules more difficult. On the other hand, the energy required to rotate the
side groups increases with their size (see figure 8.1) because the side groups on
a single molecule interfere with each other due to their spatial extension and
their electrostatic repulsion.7 The glass temperature thus increases with the
size of the side groups. If we compare the glass temperature of polyethylene
(−110℃ . . .−20℃) without side groups, polypropylene (−20℃ . . . 0℃) with
a simple methyl group, and polystyrene (100℃), we immediately see how the
size of the side group influences the glass temperature.

If the side chains are long and flexible, they may also decrease the glass
temperature. On the one hand, the number of freely movable chain ends
increases and thus causes an effect similar to a reduction in the chain
length (see section 8.1.3), on the other hand, the side groups tend to
increase the distance between the chain molecules and thus reduce the
bond strength. If the chains become very long, the glass temperature
rises again because the side chains can be arranged regularly, similar
to a semi-crystalline polymer [13].

Impeding the rotation is also the mechanisms responsible for the rather large
glass temperature of polytetrafluor ethylene (ptfe, Teflon) with a value of
6 The tendency to form crazes is also reduced in this way since crazing requires to

draw some molecules from the bulk material into the fibrils [83].
7 This was already discussed in section 8.1.1 for the side groups in pmma.
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Fig. 8.23. Spatial structure of a ptfe chain molecule. The strong repulsion between
the fluorine atoms results in a twisted and rigid molecule

126℃. The large electron affinity of fluorine causes the fluorine atoms to be
partially negatively charged. They thus repel each other and cause a twist
in the molecule to maximise the distance between them (figure 8.23). In a
rotation of the chain, the charged atoms approach each other and thus need
additional energy, resulting in an increase in the glass temperature.

Furthermore, the glass temperature is affected by the bond strength be-
tween the chain molecules. To increase the glass temperature, the bonds can
be made stronger. This can be achieved, for example, by adding polar side
groups which can form stronger dipole bonds between the molecules. This is
the reason why the glass temperature of polyvinyl chloride is larger than that
of polyethylene. Replacing a single hydrogen atom by chlorine increases the
glass temperature from between −110℃ and −20℃ to approximately +80℃.
This is due to the dipole bond being much stronger than the van der Waals
bond as explained in chapter 1.

Because the electron affinity of fluorine is even larger than that of chlorine
and because each monomer of ptfe contains four fluorine atoms, it might be
surmised that the glass temperature of ptfe is much larger than that of pvc.
This, however, is not the case because the dipole bonds in pvc are in fact
stronger than those in ptfe. One reason for this is that the dipole moments
of neighbouring regions of ptfe cancel each other due to the spatial structure
of the molecule (see figure 8.23) which possesses only negative charges on the
outside. Furthermore, fluorine is a much smaller atom than chlorine, resulting
in a shorter bond length between carbon and fluorine. The strength of a
dipole is directly proportional to its length, giving the carbon bond with
the chlorine atom a larger dipole moment. Altogether, ptfe behaves like a
nonpolar molecule, making it suitable for low-adhesion coatings.

Hydrogen bonds can also strongly bond the molecules in a polymer. One
example is polyamide (see table 1.3) which contains hydrogen bonds formed
by the hydrogen atoms of the amino groups of neighbouring molecules.

All methods discusses so far can also serve to increase the melting temper-
ature in a semi-crystalline polymer. However, to achieve a high crystallinity,
the chain molecules must be sufficiently mobile to allow them to arrange in
an ordered alignment. Stiffening the molecules therefore may decrease the
crystallinity. A further problem is that a polymer made of stiff molecules has
a large viscosity at high temperatures, making manufacturing processes like
injection moulding more difficult.
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8.5.2 Increasing the crystallinity

The strength of semi-crystalline polymers is larger than that of amorphous
polymers. If the crystallinity of a polymer can be increased, the mechanical
properties are improved accordingly.

The crystallinity of a polymer can be changed by the manufacturing pro-
cess and by the structure of the chain molecules. Upon cooling from the melt,
crystalline regions can only form if there is sufficient time to arrange the
molecules in the energetically favourable more densely packed crystal struc-
ture. Crystallinity is thus a function of the cooling speed. If this speed is too
high, the polymer is purely amorphous. This is analogous to the production
of glasses or to precipitation and transformation processes (see section 6.4.4).

The crystallinity can also be increased by orienting the chain molecules
under mechanical loads. This was already discussed in section 8.4.1 for the
plastic deformation of an amorphous thermoplastic close to the glass tem-
perature. By applying a tensile load, the fibres are drawn and straightened,
forming crystalline fibres bundles.

The size of the side chains and thus the mobility of the chain molecules
also influences the crystallinity. The more immobile the molecules are, the
more difficult it is to arrange them in a closely packed and regular manner.

For this reason, polyethylene is well-suited to form high-strength fibres
because the polymer chain is very mobile due to its simple structure and
can be easily drawn in fibre direction. Depending on the straightening of
the molecules, Young’s modulus can reach values of up to 200 GPa [107]. In
technically used fibres, values between 62 GPa and 175 GPa are characteristic
(see also table 9.1). These are rather high values, especially so if the low
density of slightly less than 1 g/cm3 is taken into account. They are due to
the covalent carbon bonds along the backbone.

Polymers with stiff chain molecules usually have a lower crystallinity than
those made of mobile chains. Exceptions from this rule do occur, however:
Due to its very stiff and straight chain molecules, ptfe can reach crystallinity
values of up to 90%. This is only possible if the cooling speed is very low; in
technical applications, the crystallinity is therefore usually less.

The molecules can also be oriented during cooling from the melt by shear-
ing the melt with high speeds because this will also align the molecules. This
has to be kept in mind when designing polymer components manufactured
by injection moulding to avoid a strong fluctuation of the crystallinity in the
final component.

Aramid is one example for a polymer that can be manufactured with high
crystallinity in this way. This is mainly used to produce aramid fibres. Due to
the aromatic rings on the backbone (see figure 1.23), the molecule is extremely
stiff. It thus does not fold up, but usually exists in rod-like form (similar to
ptfe). Well above the melting temperature, these rods are disordered in the
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(a) Isotactic; all side groups are positioned on the same side

(b) Syndiotactic; the side group positions alternate

(c) Atactic; random positions of the side groups

carbon hydrogen chlorine

Fig. 8.24. Configuration of side groups in polyvinyl chloride (pvc)

melt. If the temperature falls below a certain ordering temperature (which is
larger than Tm), the molecules start to align themselves in parallel because
this increases their binding energy. They now possess a preferential orientation,
although their positions are still unordered.8 If fibres are drawn from the melt,
the molecules in the fibres orient themselves in the drawing direction.9

Especially important in determining the crystallinity of a polymer is the
tacticity, the way the side groups of the monomers are arranged within the
chain. We distinguish the isotactic arrangement (figure 8.24(a)), in which all
side groups are regularly arranged on one side of the chain molecule, the
syndiotactic arrangement with alternating side groups (figure 8.24(b)), and
the irregular atactic arrangement with random orientation of the side groups
(figure 8.24(c)). The more regular the arrangement of the side groups is, the
easier it is to arrange the chain molecules in a crystalline structure. If the
structure is the same otherwise, isotactic polymers thus have the largest, atac-
8 In this state, the molecules thus form a liquid crystal. Liquid crystals are charac-

terised by molecules that have a preferential orientation but unordered positions
like the molecules of a liquid.

9 This is similar to the drawing of silk, see page 281.
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(a) Linear (b) Branched

Fig. 8.25. Linear and branched chain molecules. Side chains impede the formation
of crystalline structures

tic polymers the lowest crystallinity. The isotactic structure is also superior to
the syndiotactic because the latter can only be crystalline if the side groups
match and interlock exactly.

Although thermoplastics comprise un-linked chain molecules, they can nev-
ertheless have a branched structure. In contrast to elastomers and duromers,
these branches do not cause cross-linking between the chains, but they can
inhibit a geometrically dense packing necessary to form crystalline regions.
This is sketched in figure 8.25.

8.6 Increasing strength and stiffness

The most important methods to increase the strength or stiffness of a polymer
are a direct consequence from what we saw in the previous section. They are:

• Increasing the bond strength, for example by adding polar side groups
(section 8.5.1),

• impeding the sliding of the chains, for example by adding large side groups
or by stiffening the chain molecule (section 8.5.1),

• increasing the crystallinity, for example during manufacturing or by using
isotactic structures (section 8.5.2),

• orienting the chain molecules in load direction (section 8.4.1).

Table 8.2 contains a survey of the mechanical properties of different polymers.
The effect of the different mechanisms to increase strength or stiffness can
be clearly seen from the table. Low-density polyethylene (ldpe), containing
branched polymer chains and thus possessing a low crystallinity of about 45%,
has the lowest Young’s modulus and the lowest tensile strength because it
consists only of simple and mobile molecules with weak intermolecular bonds.
Increasing the crystallinity to 75% and thus the density (creating high-density
polyethylene, hdpe), markedly improves the properties because the larger
crystallinity strongly increases the number and strength of the intermolecular
bonds. If side groups are added, as it is done in polypropylene and polyvinyl
chloride, the mechanical properties improve accordingly as already discussed.
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Table 8.2. Typical properties of several polymers (after [44,98]). Since the proper-
ties also depend on the degree of polymerisation and additives, the values specified
only serve as guidelines

material Rm/MPa E/GPa %/(g/cm3)

low-density polyethylene 15 0.3 0.92
high-density polyethylene 35 1.0 0.96
polypropylene 35 1.5 0.91
polyvinyl chloride 55 3.0 1.4
polyethyleneterephtalate 65 3.0 1.3
polymethylmethacrylate 70 3.3 1.2
polycarbonate 75 2.3 1.2
polyamide 80 3.5 1.2

(a) Alternating

(b) Random

(c) Block copolymer (d) Graft copolymer

Fig. 8.26. Different types of copolymers (after [19, 31])

One method of improving the strength or stiffness is particularly important
in polymers: Combining them with other materials to form composites. This
is the subject of chapter 9.

8.7 Increasing the ductility

As already mentioned in section 8.4.2, the ductility of semi-crystalline ther-
moplastics is increased if they are used above their glass temperature. Here,
the amorphous regions are easily deformable, whereas the crystalline regions
increase the strength. Semi-crystalline thermoplastics are thus well-suited for
applications requiring an increased ductility.

Copolymerisation is another approach to improve the mechanical be-
haviour of polymers, especially their ductility. In copolymerisation, different
monomers are used to form the chain molecules. There are several possibilities
to arrange the monomers, shown in figure 8.26. The monomers can alternate
(alternating copolymerisation) or can be arranged irregularly (random copoly-
merisation). In block copolymers, there are longer chain segments of one type
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Fig. 8.27. Temperature dependence of Young’s modulus of a copolymer. Alternating
and random copolymers have a glass temperature between both basic polymers;
graft and block copolymers behave like semi-crystalline thermoplastics (possessing
two transition temperatures) [97]

alternating with those of the other, in graft copolymers, the main chain is
formed by one monomer to which side chains made of the other are attached.

Copolymerisation is frequently used to decrease the glass temperature,
with the intent of increasing the ductility. This is called internal plasticisa-
tion.10

Figure 8.27 shows the temperature dependence of Young’s modulus of two
polymers and their copolymers. One example of a copolymer is polybutadi-
ene styrene, made of the monomers of polybutadiene and polystyrene. If the
copolymerisation is alternating or random, the glass temperature is between
that of the constituting polymers. This is easily understood because the larger
side groups in polystyrene increase the glass temperature compared to that
of polybutadiene, the more so, the higher the content of polystyrene.

In a graft or block copolymer, another effect occurs: The polymer con-
tains regions rich in polybutadiene and rich in polystyrene. When the glass
temperature of polybutadiene is reached, these regions start to melt, but the
polystyrene-rich regions are still below their glass temperature. The overall
behaviour is thus similar to that of semi-crystalline polymers due to the differ-
ent melting temperature of the intermolecular bonds in the different regions.
Therefore, copolymerisation causes a decrease in strength, but a significant
increase in ductility.

Block copolymers can also increase the ductility by affecting crazing. As
explained in section 8.4.1, crazes in amorphous polymers are initiated at
surface defects because cavities can form there more easily. These crazes

10 Plasticisers are molecules added to a polymer to reduce its glass temperature and
thus increase its ductility.
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cause a local stress concentration and, finally, fracture of the material.
By block copolymerisation, cavity formation can be initiated at the
many interfaces within the polymer. A large number of crazes may
form, allowing significant plastic deformation before fracture. A similar
effect can be achieved by blending (i. e., mixing) different polymers.

This method of influencing crazing is especially important in high-
impact polystyrene (hips). Polystyrene is copolymerised with butadi-
ene to form small, spherical butadiene (rubber) particles. These induce
internal stresses in the material, easing the formation of crazes. If the
particles are small, a large number of small crazes form that grow only
a short distance. The material has a large strength, but only a small
ductility. If the particles are larger, the number of crazes decreases,
but they can grow for larger distances, thus decreasing the strength
but increasing the ductility [44]. If the material is also copolymerised
with acrylonitrile (CH2−CH−CN), it is called acrylonitrile-butadiene
styrene (abs), with an increased strength and ductility and also a larger
resistance against solvents.

∗ 8.8 Environmental effects

Polymers are sensitive to several environmental effects. Polar or nonpolar
solvents or irradiation with ultraviolet light can significantly decrease the
strength of a polymer.

Polymers may react with different organic or inorganic solvents. Generally,
polar solvents may permeate polar polymers and nonpolar solvents nonpo-
lar polymers. For example, pmma has a limited solubility for alcohol and
polyamide (pa, nylon) for water.

If a solvent attacks a polymer, its molecules enter the space between the
chain molecules, thus increasing their distance. This increases the volume of
the polymer, a phenomenon called swelling. The intermolecular bond length
is thus increased, weakening the bonds and reducing the glass temperature,
strength, and stiffness. This problem is especially severe in polyamides because
they can absorb several weight-percent of water. In humid environment, their
mechanical properties can thus be severely impaired. On the other hand, this
effect can be exploited by increasing the ductility of polymers that would be
brittle at service temperature. To achieve this, plasticisers are added. This is
the reason why pvc can be used in floorings or plastic bags.

If solvents penetrate a polymer and weaken the intermolecular bonds,
they also ease the formation of crazes. On the one hand, the solvent
reduces the surface energy, facilitating the formation of free surfaces
needed to initiate and propagate crazes. On the other hand, the reduced
bond strength reduces the force needed to draw chain molecules out of
the bulk material to form fibrils. Crazes formed by this mechanism may,
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as explained in section 8.4.1, serve to initiate cracks. In this case, the
strength of the polymer decreases and it becomes more brittle.

The increase in volume by swelling can also reduce the strength of a com-
ponent. If the amount of dissolved solvent is different in different parts, the
volume increase is non-uniform, and residual stresses may be induced. If, for
example, the solvent diffuses out of the surface region, it is under tensile stress
and thus sensitive to tensile loads.

One way to protect polymers from solvents is copolymerisation. For ex-
ample, polystyrene can be attacked by the nonpolar solvent benzene. Copoly-
merisation with a polar group (for example acrylonitrile) stops the nonpolar
solvent from penetrating the material.

Ultraviolet light can also affect polymers because it may break the chemical
bonds within the molecular chains. This reduces the chain length and thus
the glass temperature. It may also lead to the formation of covalent bonds
between neighbouring chain molecules, embrittling the material. This can be
avoided by adding light-absorbing or -reflecting particles, for example carbon
black or titanium oxide. When irradiated with uv light, polyvinyl chloride
dissociates chlorine radicals which may react to form hydrochloric acid (HCl).
Stabilisers that can bond the radicals prevent this process.

Elastomers like polybutadiene can also be attacked by oxidation. In this
case, additional cross-links between the chain molecules are formed, causing
embrittlement.
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Mechanical behaviour of fibre reinforced
composites

In composites, different materials are combined to exploit favourable proper-
ties of each. That such combinations may be attractive was already shown
in section 6.4.4 for particle strengthening of metals and in section 7.5 for
dispersion-strengthened ceramics.

It is rather difficult to exactly define the meaning of the word ‘compos-
ite’. In the broadest sense, one might consider every material as a composite
that comprises two physically distinct phases.1 However, using this definition
would imply that almost every technically used material is a composite, for
example almost all steels or precipitation hardened alloys, rendering the def-
inition practically useless. Composites used today are characterised by the
following properties:

• A strengthening second phase is embedded in a continuous matrix.
• The strengthening second phase and the matrix are initially separate ma-

terials and are joined during processing – the second phase is thus not
produced by internal processes like precipitation.

• The particles of the second phase have a size of several micrometres at
least.

• The strengthening effect of the second phase is at least partially caused
by load transfer.

• The volume fraction of the strengthening second phase is at least approx-
imately 10%.

To use these properties as definition is, however, problematic and, furthermore,
not future-proof, for further developments (e. g., in nanotechnology) will surely
lead to new composites which do not posses some of these properties.

In this chapter, the focus is on fibre reinforced composites, or fibre com-
posites, for short, in which the particles of the second phase are long fibres,
surrounded by a matrix of the other component. One example is glass-fibre re-
1 It has to be noted that ceramic composites exist in which both phases are chemi-

cally identical, see section 9.1.2.
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inforced polymer (gfrp) in which a polymer matrix is strengthened by adding
glass fibres. As initially stated, the objective of forming composites is to com-
bine desired properties of the constituents. In the case of glass-fibre reinforced
polymers, the glass fibres increase the stiffness and strength, and the sur-
rounding matrix makes the material more ductile and protects the fibres from
concentrated loads.

Fibres are frequently used as strengthening component because the load
transfer from the matrix is especially effective if the strengthening phase is
elongated in the loading direction. We will discuss this in some detail later on.
Furthermore, fibres may be advantageous because they are rather thin with a
diameter between 1 µm and 25 µm. Defects in the fibre are thus rather small.

9.1 Strengthening methods

Because different materials are joined in composites, there are a large number
of possible combinations. Metal, ceramic, or polymer matrix composites can
be strengthened with different kinds of particles or fibres. Composites may be
classified either by the geometry of the strengthening particles (fibres, fabrics,
etc.) or by the matrix material used.

9.1.1 Classifying by particle geometry

If we characterise composites by particle geometry, we can distinguish fibres
and particles (in the narrow sense). In fibres, one dimension is larger than the
others by at least one order of magnitude, thus they are shaped like long and
slender cylinders. In particles, the extension is approximately the same in all
directions. Other structures are also possible; the phases may, for example,
also be arranged in a sandwich structure or laminate with alternating layers
of different materials.

Fibres themselves can be further distinguished by their geometry. If we
consider the properties of the composite, we can talk of long fibres if the
properties of the composite do not change when the fibre length is increased
further, whereas a change in length has an influence on the properties when
short fibres are used.2 Long fibres with an extension comparable to that of the
whole component are frequently called continuous fibres. For example, glass
fibres (with diameters of a few ten micrometres) are denoted as short fibres
(or chopped fibres) if their length is less than a millimetre, as long fibres if the
length is between one and fifty millimetres, and as continuous, if their length
is even larger.

The length of the fibres not only determines the mechanical properties,
but is also important for the manufacturing process because long fibres have
to be processed different from short fibres. This will be discussed now.
2 This is the topic of section 9.3.2.
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Long fibres and fabrics

As we will see later in great detail, strengthening a material with fibres aligned
with the direction of the applied tensile stress or maximum principal stress
(uniaxial alignment) is advantageous. In this configuration, the different elas-
tic properties of fibre and matrix cause stress concentrations at the fibre ends
because load has to be transferred from the matrix to the fibre. The longer the
fibres are, the more effective is the load transfer, and the smaller are the re-
gions of stress concentrations. Therefore, long fibres are mechanically superior
to short ones.

Because the fibres are usually very thin, they are bundled in so-called rov-
ings, comprising several thousand single fibres. The diameter of these rovings
is thus in the range of millimetres. Alternatively, the fibres can be spun to
form yarns.

One disadvantage of the uniaxial structure is that the stiffness and the
strength in the transversal direction are markedly inferior (see sections 9.2.2
and 9.3.6). For this reason, different orientations of the fibres may be com-
bined. Mats containing uniaxial fibres are stacked on top of each other to
form laminates, or the fibres can be woven to fabrics that can be laminated
again. The orientation of the fibres within the layers can be chosen orthogonal
to each other or in more complex ways (for example, with relative orientations
of 45°). The properties of such a material can be isotropic within the plane
of the fibres, but they are weaker perpendicular to them because there are
no fibres in this direction. To make the material isotropic, it is necessary to
arrange the fibres in all three directions, but this is rather difficult to achieve
with continuous fibres because the fibres have to be woven in three directions.

Long fibres or fabrics have to be positioned correctly within the manu-
factured component. This can be achieved most easily if the melting point
of the matrix material is well below that of the fibres, as in polymer matrix
composites. If duromers are used as matrix, the fibres can be laid down in an
uncured mixture of resin and hardener. On curing, the resin hardens to form
the duromer.

Short fibres

Short fibres can also be directed or at least possess a preferential direction,
but frequently they are distributed irregularly in the matrix, rendering the
composite isotropic. The main advantage of short fibres is their cheaper pro-
duction and the easier manufacturing process.

Short-fibre reinforced components can be manufactured by using laminates
or mats (chopped-strand mats) containing the fibres. Furthermore, because
of the smaller dimension of the fibres, all other manufacturing processes that
can be used for the unreinforced matrix material are in principle available.
Polymers, for example, can be formed by injection moulding; in metal matrix
composites, metal forming processes like rolling can be used.



www.manaraa.com

298 9 Mechanical behaviour of fibre reinforced composites

These processes may not only change the properties of the matrix (as in
producing a texture in a metal on rolling), but also on the orientation of the
fibres within the matrix. If, for example, a liquid polymer is pressed into a
cylindrical mould, the flow velocity is larger in the middle of the cylinder. This
difference in the flow velocity causes a preferential orientation not only of the
chain molecules, but also of the fibres. Because of the velocity gradient, they
are directed perpendicularly to the flow velocity in the middle of the cylinder
and parallel to it near the surface [97]. This orientation of the fibres has to be
taken into account in designing components because it causes an anisotropy
even in short-fibre reinforced composites. Seams, which are created when two
partial flows meet, are especially problematic because the flows usually do
not mix, resulting in the seam not being bridged by fibres. To avoid these
problems, computational fluid dynamics calculations are used to optimise the
filling of the mould by ensuring that highly-stressed regions contain fibres with
a favourable orientation.

Particles

How particles can be used to change material properties was already discussed
in different contexts. Precipitates in metals were covered in section 6.4.4, par-
ticle strengthening in ceramics in section 7.5, and copolymers in section 8.7.

Among the particle-reinforced materials are the cermets (a word created
from ‘ceramic’ and ‘metal’) that comprise a metallic matrix containing ce-
ramic particles. Very hard carbides, for example tungsten carbide or titanium
carbide, are embedded in a cobalt matrix. These cermets are frequently used
as cutting tools. The ceramic particles serve to improve the wear resistance,
an effect similar to that already discussed in section 6.4.4 for the case of coarse
particles in metals.

Another important particle-reinforced material is concrete. Concrete con-
sists of a cement matrix (a ceramic), containing stone or sand (the so-called
aggregate) as reinforcing particles. The aggregate not only serves to mod-
erately increase the stiffness and fracture toughness, but has the additional
advantage of being less expensive than the cement. Because of the low frac-
ture toughness, the tensile strength of concrete is rather small (about 4 MPa);
the compressive strength is much larger with values of about 30 MPa.3 For
this reason, concrete is mainly stressed in compression in applications. To
achieve this, it can be armed with reinforcing steel wires or rods positioned
in the mould before pouring the concrete into it (ferroconcrete). If these are
pre-stressed in tension, they superimpose a compressive load on the concrete
after setting, further increasing the strength (prestressed concrete).
3 In dealing with concrete, it is rather important to take the volume dependence

of the failure stress (equation (7.9)) into account.
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Sandwich structures

In sandwich structures, the phases are arranged in layers. This may be useful in
plates or shells loaded in bending, with the stiffer outer material being placed
well away from the neutral axis and the less stiff material in between, mainly
to keep the distance between the load-bearing outer layers constant. The filler
material usually has a low density (for example, being a polymer or a foam),
making sandwich structures especially suitable for light-weight applications.
Furthermore, they often provide good heat insulation. Sandwich structures
are mainly used in the aerospace industry, in automotive engineering, and in
boat building, for example in light-weight sports boats.

9.1.2 Classifying by matrix systems

All classes of materials can be suitable as matrix material. In this section,
we briefly introduce the different matrix systems. A more detailed discussion
can be found at the end of the chapter in section 9.4, after the mechanical
behaviour of composites has been discussed.

Polymer matrix composites

Polymer matrix composites (pmc) are used to increase the rather low stiffness
or strength of polymers by adding stiffer or stronger fibres. If thermoplastics
are used as matrix material, short fibres can be added to the granulate ma-
terial that is subsequently softened by heating and processed, for example in
injection moulding. If thermoset resins (duromers) are used, the fibres can be
placed into the liquid resin before curing.

There are a large number of possible fibre materials that can be used
in reinforced polymers. The most common are glass, carbon, aramid, and
polyethylene.

Metal matrix composites

The main advantage of metal matrix composites (mmc) is their increased stiff-
ness and strength compared to the unreinforced material. Long or short fibres
can be used for strengthening. Common fibre materials are carbon, silicon
carbide, aluminium oxide, boron, and refractory metals like tungsten. Usually,
light metals (aluminium, titanium, magnesium) are used as matrix materials.
Compared to polymer matrix composites, metal matrix composites have the
advantage of larger service temperatures.

One disadvantage is that metal matrix composites have to be processed
at markedly larger temperature. This not only increases the requirements on
tools used during processing, but also on the fibres which have to withstand
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these temperatures as well. Metal matrix composites can be manufactured by
melting, adding the fibres to the melt. One alternative are powder metallur-
gic methods in which a metal powder containing the fibres is compacted at
temperatures slightly below the melting temperature. The fibre material can
also be embedded in layers between layers of the matrix metal. The material
is then compressed with high pressure at elevated temperatures to press the
metal between the fibres.

Ceramic matrix composites

In ceramic matrix composites (cmc), the fibres mainly serve to increase the
fracture toughness. Because one important property of the fibres is their small
defect size, it is possible to use the same material for fibre and matrix. The
advantage of this is that the elastic properties of fibre and matrix are identical,
avoiding the formation of stress concentrations, and that the coefficient of
thermal expansion is also the same, so no residual stresses are generated during
cooling. Chemical reactions do not occur as well. Possible fibre materials are
mainly ceramics.

As in other composites, ceramic matrix composites can be processed with
long or short fibres. There are several methods to manufacture long-fibre rein-
forced ceramics: If the matrix material is a glass, it can encompass the fibres
at temperatures above the glass temperature (of about 1000℃) where the
matrix behaves like a viscous fluid. Subsequent hot-pressing further compacts
the material and removes pores. With this technique, fibre volume fractions
of up to 60% are possible. Alternatively, chemical reactions can be used to de-
posit the matrix around a pre-shaped fibre network, starting with a gaseous
or liquid phase [28]. This technique can also be used to coat fibre bundles
which can then be processed further by filament winding to form the final
component.

Short-fibre reinforced ceramic matrix composites can be produced by sin-
tering at high temperatures, similar to ordinary ceramics (see section 7.1).
The fibres are mixed with the powder and the composite is sintered at high
temperatures. Fibre volume fractions of 35% can be obtained in this way.

9.2 Elasticity of fibre composites

Young’s modulus of a fibre composite is determined by the elastic properties of
the constituent materials and also depends on the loading direction. Because
the fibres are usually stiffer than the matrix, the modulus is larger in fibre
direction than transversally to it.

In this section, we start by considering the simplest case of continuous,
uniaxially directed fibres loaded precisely in parallel or transversely to the fibre
direction. Afterwards, we will discuss the case of arbitrary load orientation.
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Fig. 9.1. Parallel connection of fibre and matrix

9.2.1 Loading in parallel to the fibres

If the fibres are oriented parallel to the loading direction, their arrange-
ment is called parallel connection, analogous to the connection of springs
(figure 9.1(a)). Similar to springs connected in parallel, the deformation in
the matrix (subscript ‘m’) and in the fibre (subscript ‘f’) must be the same,
but the stress may differ:

εf = εm , σf 6= σm . (9.1)

By inspecting the geometry and defining the volume fractions ff and fm, with
ff + fm = 1, we find the (isostrain) rule of mixtures

σ = σfff + σm(1− ff) . (9.2)

Using this together with equation (9.1), we find that Young’s modulus of the
composite is

E‖ = Emfm + Efff = Em

[
1 + ff

(
Ef

Em
− 1

)]
. (9.3)

Figure 9.1(b) shows how Young’s modulus depends on the volume fraction of
the fibres. Equations(9.2) and (9.3) are derived in exercise 28.

9.2.2 Loading perpendicular to the fibres

If the fibres are oriented perpendicular to the loading axis, this is called serial
connection in analogy to springs connected this way. To simplify matters, we
assume that the fibres are plates extending over the whole cross section of the
material and oriented perpendicularly to the applied load (figure 9.2(a)).

In the serial connection, the balance of forces must hold at each fibre-
matrix interface:
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Fig. 9.2. In-series connection of fibre and matrix

σf = σm . (9.4)

Again in complete analogy to springs, both materials can deform in different
ways:

εf 6= εm .

The following (isostress) rule of mixtures applies:

ε = εfff + εm(1− ff) . (9.5)

If we use Hooke’s law and the condition (9.4), we find, after some rearrange-
ment, Young’s modulus

E⊥ =
Em

1 + ff

(
Em
Ef
− 1

) . (9.6)

Figure 9.2(b) shows how Young’s modulus depends on the volume fraction of
the fibres or plates. Compared to figure 9.1(b), it is apparent that the increase
in stiffness perpendicular to the fibre direction is much smaller than in the
parallel orientation. The derivation of the (isostress) rule of mixtures and of
Young’s modulus for this case is also presented in exercise 28.

∗ 9.2.3 The anisotropy in general

The considerations of the previous sections dealt with the two most extreme
load cases: If loaded in fibre direction, the stiffening effect of the fibres is max-
imal, if loaded perpendicularly, it is minimal. Under arbitrary loads, it is nec-
essary to calculate the components of the elasticity tensor (see section 2.4.2).
Depending on the fibre arrangement, couplings between normal and shear com-
ponents can occur. For example, this can be exploited to construct aerofoils
that twist on bending, with normal stresses causing shear strains.
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If the fibres are uniaxial, there is still some symmetry in the material,
and the number of parameters needed to describe the elastic behaviour is
smaller than 21, the value for a triclinic lattice. If the fibres are directed,
but their positions in space are irregular or arranged on a hexagonal lattice,
the material is transversally isotropic i. e., its properties are the same in all
directions perpendicular to the fibre direction. In this case, there are five
independent elastic constants (see section 2.4.6). If the fibres are uniaxial and
arranged on a rectangular lattice, the material is orthotropic, and the number
of independent elastic components is nine (see section 2.4.5).

To determine the elastic constants, empiric equations are frequently used
that provide a useful approximation, often even in the case of non-continuous
fibres. One example are the so-called Halpin-Tsai equations [29].

9.3 Plasticity and fracture of composites

It was already discussed that one of the advantages of composites is the fact
that the strengthening phase cannot contain defects larger than its extension.
For fibre composites, which are our focus here, the crucial dimension is the
fibre diameter. Carbon fibres are used with diameters of less than 5 µm if the
objective is to increase the strength as much as possible.

We saw in the previous section that the elastic properties of a composite
can be described using a rule of mixtures. This, however, is usually not the
case for the plastic and the failure behaviour.

In this section, we start by discussing the behaviour of fibre compos-
ites under tensile loads, at first for the simplest case of continuous fibres.
Subsequently, we will discuss the load transfer between the matrix and non-
continuous fibres and see how this determines the failure properties and the
fracture toughness of the material. For this, we also have to consider that
fibre properties are statistically distributed. Finally, we will discuss the be-
haviour under compressive loads, loads perpendicular to fibre direction, and
arbitrarily oriented loads.

9.3.1 Tensile loading with continuous fibres

To simplify the discussion, we start by considering the idealised case from
figure 9.1(a), with the strengthening fibres being parallel to the load and
extending throughout the component. Thus, no effects occurring at the ends
of the fibres have to be taken into account, and the fibres are loaded directly
by the external load, so no load transfer between fibre and matrix needs to
be considered. Finally, we assume that all fibres are identical without any
statistical scatter in their strength or diameter.

Failure starts when the stress in matrix or fibre reaches the yield or tensile
strength. Similar to the elastic case, we can apply an isostrain rule of mixtures
(equation (9.2)) to calculate the stress in the composite:
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Fig. 9.3. Schematic stress-strain diagram of a fibre-reinforced polymer (after [9])

σ = σfff + σm(1− ff) , (9.7)

with σf and σm being the stresses in fibre and matrix, and ff being the volume
fraction of the fibres. In contrast to equation (9.2), we are now interested in
the failure stress of the composite. Therefore, at least one of the stresses in
equation (9.7) is a yield or tensile strength.

This rule of mixtures is only approximately valid, even with all simplifying
assumptions we have already made. The yield strength of the matrix can be
affected by the presence of the fibres in different ways: Adding fibres to a
matrix may cause thermal stresses during cooling or other residual stresses, it
may render the stress state triaxial if Poisson’s ratios of fibre and matrix differ,
or it may change the microstructure of a metallic matrix. Young’s modulus,
being a bulk quantity, is less sensitive to such effects than the yield or tensile
strength, making the rule of mixtures more appropriate for the elastic case.

To further discuss equation (9.7), we have to distinguish two cases, depend-
ing on whether failure occurs first in matrix or fibre. As the strains in both
components are the same because of the parallel connection, the material with
the smaller failure strain will fail first (see also exercise 29).

Failure strain in the matrix larger than in the fibre

If the failure strain in the matrix is larger than in the fibre, the fibres fracture
before the matrix fails. This is frequently the case in composites with metallic
or polymeric matrix. Figure 9.3 shows the resulting stress-strain diagram. It
is assumed that the matrix yields plastically before the fibre breaks. The
material deforms elastically until the matrix yields. On further increasing the
strain, the strengthening fibres fracture, and the stress-strain curve drops to
a small stress value that lies below that of the pure matrix material because
of the reduced volume. Eventually, failure by fracturing of the matrix occurs.
The fracture strain is smaller than in a pure matrix material. This is due
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to damage initiated by the breaking fibres and the triaxial stress state in a
composite.

In component design, the maximum stress in the material is usually the
quantity of interest. If the fraction of fibres is so large that the matrix cannot
bear a given load after the fibres have fractured (this is the case in figure 9.3),
the failure stress is given by the isostrain rule of mixtures, equation (9.7),
where σf is the failure stress of the fibres and σm the stress in the matrix at
the failure strain of the fibres. If the volume fraction of the fibres is small, the
matrix can still bear the load even after the fibres have fractured. In this case,
the failure stress of the composite is (1 − ff)σm, with σm being the failure
stress of the matrix. The failure stress is thus reduced, compared to the pure
matrix material.4

Even if the fibres are long, albeit discontinuous, the stress-strain diagram
frequently looks like that shown in figure 9.3. This will be discussed further
in section 9.3.4.

Failure strain in the fibre larger than in the matrix

The failure strain of the fibre may also be larger than that of the matrix in
some cases, for example in carbon-fibre reinforced duromers or in ceramic
matrix composites. After the strain has exceeded the failure strain of the
matrix, the complete load has to be borne by the fibres. Similar to the previous
case, the maximum stress in the composite depends on the volume fraction
of the fibres. If it is sufficiently large, the fibres do not break but can take a
load of ffσf .5 If the volume fraction is too small, the maximum stress is again
determined by the isostrain rule of mixtures, equation (9.7), but now taking
σm as failure stress of the matrix and σf as the stress in the fibre at the failure
strain in the matrix. In ceramic matrix composites, the matrix frequently does
not fail completely, but forms many small cracks bridged by the fibres. The
stress-strain curve for this case will be discussed in section 9.3.3.

9.3.2 Load transfer between matrix and fibre

It was already stated that the considerations of the previous section were sim-
plified. In particular, the assumption of continuous fibres extending through-
out the component and loaded directly by the external load is almost never
valid. If the fibres are completely embedded within the matrix, the load trans-
fer between matrix and fibre is crucial in determining the strengthening effect.
For this reason, we will now discuss this load transfer.
4 As already discussed, the failure stress of the matrix is frequently not the same

as it were if no fibres were present, but smaller. In this case, the failure stress at
small fibre contents is reduced further. This is not the case for the elastic stiffness.

5 For this to be true, it has to be assumed that a crack propagating within the
matrix does not cause fibre fracture. We will see in section 9.3.3 under which
conditions this assumption holds.
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Fig. 9.4. Elastic deformation of the matrix near a fibre under tensile loads. Young’s
modulus of the fibre has been assumed to be 100 times larger than that of the matrix;
the fibre-matrix interface is perfectly bonded and cannot fail. Poisson’s ratio of fibre
and matrix has been assumed to be the same

If a fibre composite is loaded in tension, the deformation within the mate-
rial is inhomogeneous. Figure 9.4 plots the elastic deformation of the matrix
surrounding a fibre with a Young’s modulus that is one hundred times larger.
Because the fibre resists the strain more strongly than the matrix, the strain
in the matrix increases accordingly. This has two consequences: On the one
hand, the strain in the matrix to the left and right of the fibre is larger than
besides it. If the total strain is prescribed, the matrix is strained more heavily
in this region than the material on average. On the other hand, shear stresses
occur near the ends of the fibre at the fibre-matrix interface, increasing the
strain in this region. The strain in the matrix of a composite is thus larger
than the strain in the fibre and is also larger than the strain in a homogeneous
material with the same total deformation. In polymer matrix composites, a
rule of thumb is that the maximum strain in the matrix is about twice as high
as the global strain of the composite (see also section 9.4.1 and exercise 29).

The load transfer between fibre and matrix is mainly due to friction caused
by interface roughness or to adhesion between fibre and matrix on the lateral
surface of the fibre. Although the strains at the front and back side of the
fibre can be large, only small loads are transferred there because these sides
are much smaller. Crucial in determining the properties of the composite is
the maximum interfacial shear stress τi.

The maximum interfacial shear stress is determined by different factors in
different composites. In a polymer or ceramic matrix, the adhesion strength
between fibre and matrix is the determining factor because it is usually smaller
than the yield strength of the polymer or the strength of the ceramic. The
adhesion strength is in some cases determined by chemical bonds between fibre
and matrix, in others by frictional forces. In a metal matrix composite, the
maximum interfacial shear stress is usually determined by the yield strength of
the matrix which is smaller than the adhesion strength in most cases. Because
the interfacial strength is crucial in determining the strength and toughness of
the composite as we will see below, large efforts are usually made to increase
or decrease it, depending on the application at hand (one example is discussed
in section 9.4.3).

To estimate the stress σf within the fibre, we consider an infinitesimal
fibre segment with a constant interfacial shear stress −τi acting on its surface
(figure 9.5). The forces within the fibre are −σf · πd2/4 at position x and
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(
σf +∂σf/∂x·dx

)
·πd2/4 at position x+dx, with d denoting the fibre diameter.

The force equilibrium is

−π d dx τi − σfπ
d2

4
+

(
σf +

∂σf

∂x
dx

)
π

d2

4
= 0 .

This yields

∂σf

∂x
=

4
d
τi .

The stress changes linearly with position if τi is constant.6
The maximum stress within the fibre is limited by the strain in the fibre (in-

dex ‘f’) which can never exceed the matrix (index ‘m’) strain. The maximum
possible fibre stress is thus

σf,max = Ef εm .

The stress distribution in the fibre is plotted in figure 9.6 for a constant
interfacial shear stress τi. It has to be noted that in a sufficiently long fibre,
there is no interfacial shear stress midway in the fibre.
6 This assumption of a constant interfacial shear stress is a rather good approxima-

tion. A more detailed discussion is given in Chawla [28].
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If we assume that the maximum stress value Ef εm is not reached, the
maximum stress actually occurring in the fibre is

σf,max =
∫ l/2

0

4
d
τidx = 2

l

d
τi . (9.8)

If we aim at a maximum strengthening effect of the fibres, they have to
be sufficiently long to be loaded up to their fracture strength σf,B. With the
help of equation (9.8), we can thus define the critical fibre length

lc =
dσf,B

2τi
,

As can be seen from the equation, the critical fibre length is proportional to
the fibre diameter. It is thus not the absolute size of the fibre, but the ratio
of its length and diameter (the aspect ratio) that determines its effect.7 To
optimally exploit the fibre strength, they should be longer than the critical
length. To achieve this, the maximum interfacial shear strength should be
large, as it is the case when chemical bonding between fibre and matrix occurs,
and the fibre diameter should be small.

To estimate the strength of the composite, we can again use the isos-
train rule of mixtures, equation (9.7). As the fibres do not extend
throughout the component, σf is to be taken as the mean stress of
the fibres. If the fibre length is equal to the critical length, the maxi-
mum stress in the fibre is σf,B and the mean stress is σf,B/2.8 If the
fibres are smaller than the critical length, the maximum value of the
fibre stress is

σf,max =
2τil

d
=

l

lc
σf,B , (9.9)

resulting in a mean fibre stress of σf,max/2. If the fibre length exceeds
the critical length, the fibres will break in some places when the load in-
creases, until the fibre fragments have approximately the critical length.
These can then bear a maximum stress of σf,B. For this reason, it is
reasonable to use fibres that exceed the critical length because they
can bear a load even after fracture occurs.

9.3.3 Crack propagation in fibre composites

In composites with a brittle matrix i. e., mainly in ceramic matrix composites,
the aim is not to increase the strength, but the fracture toughness. The frac-
ture strain of the matrix is usually smaller than that of the fibre, leading to
crack propagation in the matrix when the load increases.
7 This is different if creep deformation occurs because in this case there is diffusion

of material, see section 11.2.3.
8 We assume that the fracture strain of the matrix is larger than that of the fibre.
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(a) No crack (b) The crack reaches the
fibre

(c) The crack by-passes
the fibre along the inter-
face

Fig. 9.7. Crack propagation perpendicular to a fibre (after [29]). If the fracture
toughness of the interface is sufficiently small, the crack propagates along the inter-
face, causing detachment between fibre and matrix. Thus, the crack can bypass the
fibre and propagate further

These cracks propagate within the matrix until they reach a fibre (see
figure 9.7). To increase the fracture toughness compared to the pure matrix
material, the fibre must not fracture when hit by the crack. This can be
achieved if it is not the fibre that fails, but the interface between fibre and
matrix, causing a detachment between fibre and matrix as shown in figure 9.7.
The interface is perpendicular to the crack and thus parallel to the external
tensile load. If we look at the stress state in front of the crack tip (see fig-
ure 5.5), we see that there is a tensile component trying to open the interface.
If the fracture toughness of the interface is sufficiently small, this tensile stress
will cause failure of the interface and a local detachment between fibre and
matrix. The crack can propagate along the detached interface and grow fur-
ther without breaking the fibre. This increase in the crack surface causes an
increase in fracture toughness (see also section 7.2.1).

It is crucial for the increase in fracture toughness that the crack is bridged
by the fibre after the crack tip has propagated beyond the fibre (see figure 9.8).
The fibres can transfer loads and thus hinder further opening of the crack.

The load transfer between the crack surfaces results in a maximum of the
stress in the part of the fibre that is situated within the crack. This stress
has to be transferred to the matrix on both sides, in a region whose size is
approximately that of the critical fibre length.9 If the stress in the fibre in this
region exceeds the fracture stress, the fibre breaks. Fracture usually occurs at
a defect, for example a surface defect or a local reduction in diameter. Because
of this, fibre fracture occurs not always directly at the crack surface, but at an
arbitrary position between the stress maximum near the crack surface and the
region where the fibre stress has decreased markedly. The size of this region is
9 In the previous section, we discussed load transfer from matrix to fibre, here we

take the opposite point of view, transferring the load from fibre to matrix. Both
cases are equivalent.
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Fig. 9.8. Crack in a fibre composite bridged by fibres

determined by the critical length; the mean distance of the fracture position
in the fibre to the crack surface is thus proportional to the critical length.

After the fibre has broken, the fragment still remaining in the matrix that
bridges the crack is shorter than the critical length. The stress in the fibre
thus decreases. Therefore, the fibre will not break again, but will be pulled out
of the matrix, doing work against the shear stress τi. So far, we have assumed
that the fibre is longer than the critical length. If this is not the case, the fibre
will not break, but pull-out will occur immediately. Therefore, there is always
pull-out, regardless of the fibre length.

The work done on pull-out increases the crack resistance because it im-
pedes crack propagation. Short cracks do not benefit from this because the
crack has to grow by some multiple of the fibre distance before a process
zone with crack-bridging fibres can form. If the crack has grown a large dis-
tance, the fracture toughness approaches a constant value because for each
fibre entering the process zone another fibre leaves it. This mechanism is thus
one example for the increase in crack-growth resistance on crack propagation,
discussed in sections 5.2.5 and 7.2.5.

The crack resistance is the higher, the larger the critical fibre length is.
In a ceramic matrix composite, it is thus useful to have a low value of the
interfacial shear stress. If fibres are shorter than the critical length, they will
not break but will be pulled out on one side of the crack, if they are longer,
they will fracture first and be pulled out afterwards.

The energy dissipated on pull-out can be estimated as follows: The
force needed to pull out the fibre is

F (x) = τixπd

if the segment of the fibre remaining in the matrix has a length x (see
figure 9.9). From this, we can calculate the energy required to pull out
the fibre from the matrix by a distance l′ on one side of the crack:
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Fig. 9.10. Schematic stress-strain diagram
of a fibre-reinforced ceramic (after [29])
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In a simple approximation, we can assume that the pull-out length
varies between 0 and half of the critical length lc. The mean energy
dissipation per fibre is thus

Wf =
1

lc/2

Z lc/2

0

1

2
πdτil

′2dl′ =
1

24
πdτil

2
c .

The fracture toughness of a fibre composite is not determined by the
dissipation of one single fibre, but by the total dissipation. To estimate
this, we have to take into account how many fibres bridge the crack
and can dissipate energy by pull-out. Their number is, if the volume
fraction is constant, inversely proportional to the square of the fibre
diameter. Using this, the total energy dissipation in the composite is
proportional to τil

2
c/d.

Figure 9.10 schematically shows the stress-strain diagram of a ceramic matrix
composite. First cracks in the matrix occur at a stress of σ0. The load can be
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increased beyond that because the bridging fibres can bear larger loads, until
they finally fracture.

9.3.4 Statistics of composite failure

So far, we considered one fibre of the composite only, assuming it to be rep-
resentative of all fibres. However, this implies that all fibres have the same
properties.

In reality, fibre properties are statistically distributed. This is true for their
geometry (length and diameter), but also, especially in the case of ceramic fi-
bres, for their mechanical properties that are distributed according to Weibull
statistics (see section 7.3). Non-ceramic fibres are also usually not identical
since they may contain surface defects, for instance. Because of this statistical
distribution of their properties, not all fibres fail simultaneously even in a ho-
mogeneously loaded composite. Instead, the weakest fibre will fail first. Due
to the volume effect (see section 7.3.1), the failure probability of a long fibre
is greater than that of a short one.

In the following, we consider the case of long fibres with a length several
times larger than the critical length (see equation (9.9)). In this case, the fibre
is loaded in tension over most of its length, for load transfer occurs only near
its end points (see figure 9.6). The fibre will thus fail by fracture.

If the load on the composite is increased, the weakest fibre will break
and will thus not transfer any tensile stresses at the position of failure. This
fracture, however, will not unload the whole fibre. If it is much longer that the
critical length, the load will be transferred by interfacial shear stresses from
the matrix to both fibre fragments. At some distance from this region, both
fibre fragments bear the same load as before. Near to the fracture position, the
material is weakened and the load is transferred to the surrounding material.

If the fracture toughness of the matrix is low, this increase in stress can
cause local failure of the matrix, initiating a crack that propagates from the
site of fibre fracture. Because fibre properties are statistically distributed, the
crack will usually not cause the next fibre it encounters to fracture and will
be stopped there. The increased load is thus distributed to the surrounding
fibres.

If the load is increased further, the failure behaviour depends mainly on
the fracture toughness of the matrix and the properties of the interface. If the
matrix is brittle and the fracture toughness of the interface is large, the stress
concentration in front of the crack tip is transferred to the fibre, causing it
to break. In this case, the crack propagates on load increase, starting from
the site of first fibre fracture. If, on the other hand, the stress concentration
in front of the crack tip is not sufficient to cause fibre fracture, another weak
fibre somewhere else in the material will fail first, at a position that is com-
pletely independent of the first failure position. Thus, fibres will fracture at
arbitrary positions in the material, and the load on the material will increase
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homogeneously, with a decrease in stiffness due to the damaged regions. In
this case, the material will fail by a growing number of breaking fibres, even-
tually failing completely. Typically, the stress-strain curve for a material with
a matrix with sufficiently large fracture toughness is similar to that shown in
figure 9.3, with the only difference that there is no distinct kink in the curve
because the fibres do not fail simultaneously.

Because fibre composites frequently fail in this statistical manner by ac-
cumulating local damage, the methods of fracture mechanics are often not
too useful. If, on the other hand, a sufficiently long crack in a fibre composite
forms, it may propagate. In this case, the fracture toughness KIc of composites
with ductile matrix is often smaller than in the pure matrix material because
the fibres cause the stress state to be triaxial (see section 3.5.3). This happens
in some polymer matrix composites, but mostly in metal matrix composites
in which the fracture toughness may be halved compared to the matrix mate-
rial [62].

9.3.5 Failure under compressive loads

If a fibre composite is loaded in compression in fibre direction, the deformation
mechanism is completely different from the failure behaviour discussed so far.
In many fibre composites, the compressive strength is smaller than the tensile
strength, a fact that has to be taken into account when designing with these
materials. Because the fibres are long compared to their diameter, they may
buckle. The buckling load of a cylinder with Young’s modulus E loaded in
compression is – assuming Euler’s case 2 of buckling [18] – determined by

σb =
π2E

16

(
d

l

)2

, (9.10)

with d and l denoting diameter and length of the fibre [29]. Even in short-
fibre reinforced composites with typical fibre lengths of a few millimetres, we
usually find l/d > 100. If we consider the example of a glass fibre with Young’s
modulus of 80 GPa and l/d = 100, we find in the ideal case of a perfectly
straight fibre a buckling strength of only 5 MPa. Without the presence of the
matrix, the compressive strength of the material would thus be vanishingly
small.

Buckling of the fibres is impeded by the matrix material that has to deform
also when the fibres buckle. A single fibre does not form a single large buckle,
but buckles in a sine-shaped wave pattern, keeping the deformation of the
matrix smaller. In a fibre composite, the fibres are usually so close to each
other that neighbouring fibres cannot deform independently. There are two
different deformations patterns, sketched in figure 9.11: Neighbouring fibres
may deform either in phase or out of phase.
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Fig. 9.11. Deformation of a fibre composite under compressive stress. The fibres
can bend in an in-phase or out-of-phase pattern

The stress required to form these patterns can be calculated using an
energy balance: The energy to compress the material without buckling is com-
pared to that needed for the buckling modes. At small stresses, a homogeneous
compression needs less energy, but starting from a certain critical stress value,
it is easier to let the fibres buckle than to homogeneously compress the mate-
rial further. This critical stress is the compressive stress of the material. It is
different for the two deformation patterns.

In the out-of-phase deformation mode, the matrix is loaded in tension and
compression, in the in-phase mode, it is sheared. Because of this, the modes
are sometimes called extension mode and shear mode. Except at small volume
fractions of the fibre, the strength of the composite is smaller in in-phase
deformation which is thus the mode of interest. If a purely elastic deformation
of the matrix is assumed, the calculated strength values for the composite are
very large, but the observed values are usually much smaller. In metal and
polymer matrix composites, the matrix deforms plastically in the in-phase
mode. If we make the simplifying assumption that the matrix is perfectly
plastic with a yield strength of σm,F, the compressive strength is [122]

Rc,in phase =

√
ffσm,FEf

3(1− ff)
. (9.11)

This equation is valid only within certain limits. If the volume fraction of
the fibres approaches one, the calculated strength becomes infinite, which is
obviously not realistic. If the deformation of the matrix is not determined
by plastic deformation alone, its Young’s modulus also plays a role. Further
effects that are not considered in the equation and which may reduce the
compressive strength are the fibre orientation, the limited interfacial strength
between fibre and matrix, and the possibility that the fibres deform and fail
not by buckling, but by kinking. The compressive stress calculated with the
given equation is independent of the fibre diameter and the fibre length. In
reality, longer and thicker fibres are advantageous because it is easier to align
them during processing of the material.
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9.3.6 Matrix-dominated failure and arbitrary loads

If a composite with unidirectional fibres is loaded in tension or compression
perpendicular to the fibre direction or in axial shear in fibre direction, it can
fail without failure of the fibres by fracture, buckling, or kinking. These cases
are therefore called matrix-dominated failure.

In tensile load perpendicular to the fibres, the strengthening effect of the
fibres is small. If their elastic stiffness is larger than that of the matrix, the
fibres constrain the transversal contraction of the matrix and cause a triaxial
stress state. This may, in a metal matrix composite, for example, shift the
yield strength to higher loads. If the matrix is brittle, the triaxiality may
facilitate crack formation. If the volume fraction of the fibres is large, the
matrix between the fibres has to deform more strongly. The exact arrangement
of the fibres plays an important role here, for it determines the geometrically
necessary deformation of the matrix.

Under compressive loads perpendicular to the fibre direction, the matrix
may shear on planes parallel to the fibres. In this case, the fibres are irrele-
vant for the compressive strength. Shearing on planes cut by the fibres is not
possible because the fibres impede this. If shear occurs in the direction of the
fibres, either the matrix itself can shear between the fibres or there may be
shearing along the interface. The strengthening effect of the fibres is small in
the latter case as well. If the interface is weak, the strength of the composite
may even be smaller than that of the pure matrix material [122].

To design components made of fibre composites, for example using the
finite element method [15, 63], it is useful to know yield or failure criteria for
the composite as a whole that can be evaluated for arbitrary stress states.
Several such criteria have been suggested, but all of them are of limited appli-
cability [29,72,122].

9.4 Examples of composites

9.4.1 Polymer matrix composites

Polymers are well-suited as matrix materials due to their low density and their
low processing temperatures. Accordingly, composites with a polymer matrix
are of extreme technical importance. They are indispensable in aerospace in-
dustry and many other areas, for example in sports equipment. Polymer ma-
trix composites can be used with long and short fibres. We will start this
section by discussing long-fibre polymer matrix composites and then study
short-fibred ones.

Long-fibre reinforced polymer matrix composites

Because the strength and elastic stiffness of the fibres used in polymer matrix
composites is frequently more than a hundred times larger than that of the
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Table 9.1. Density and mechanical parameters (Young’s modulus, tensile strength,
fracture strain) of some important fibre materials [29, 41,100,117,131,141]

material %/(g/cm3) E/GPa Rm/MPa εB/−

glass fibre 2.5 . . . 2.6 69 . . . 85 1 500 . . . 4 800 1.8 . . . 5.3
aramid fibre 1.4 . . . 1.5 65 . . . 147 2 400 . . . 3 600 1.5 . . . 4.0
polyethylene fibre 0.97 62 . . . 175 2 200 . . . 3 500 2.7 . . . 4.4
carbon fibre 1.75 . . . 2.2 140 . . . 820 1 400 . . . 7 000 0.2 . . . 2.4
silicon carbide fibre 2.4 . . . 3.5 180 . . . 430 2 000 . . . 3 700 1.0 . . . 1.5
aluminium oxide fibre 3.3 . . . 3.95 300 . . . 380 1 400 . . . 2 000 0.4 . . . 1.5

polymer matrix, the mechanical properties of polymer matrix composites are
mainly determined by the fibre properties. For this reason, the highest possi-
ble fibre volume fractions are aimed at, with maximum values in aerospace
industry of about 60%. Nevertheless, the mechanical behaviour of the matrix
is also important because it determines load transfer to the fibres and it must
not fail if the strength of the fibres is to be exploited fully. Accordingly, we
will start this section by discussing the mechanical behaviour of fibres and de-
rive the requirements on the matrix material from this. Finally, the composite
properties are discussed.

The fibres

Table 9.1 contains a survey of some mechanical parameters of commonly used
fibre materials. Because glass fibres can have a very high strength of up to
4800 MPa and can also be manufactured inexpensively, it is easy to understand
why they are widespread. Their Young’s modulus is rather low, with values
comparable to that of aluminium. It can be increased somewhat by changing
the composition of the glass. However, the Si-O bond is less strong than a C-C
bond, and the density of bonds in an amorphous material is always smaller
than in a crystalline one. This explains why glass fibres cannot be as stiff as
carbon fibres. Accordingly, glass fibres are a reasonable choice if the strength
of the composite is the main design variable, but they are less useful for
applications requiring a high stiffness.

Carbon fibres are characterised by a high stiffness and strength. However,
both parameters cannot be maximised simultaneously. Figure 9.12 plots the
tensile strength and Young’s modulus of several carbon fibres. In high-strength
fibres, Young’s modulus does not exceed 400 GPa, in high-stiffness fibres, the
tensile strength is reduced.

This variation in the mechanical properties is due to the fibre microstruc-
ture. There are two different structures (so-called ‘allotropes’) of carbon: The
diamond structure, shown in figure 1.13, only forms at high temperatures and
pressures and is in fact metastable at room temperature. The stable confor-
mation of carbon is graphite. In graphite, the carbon atoms are ordered in a
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Fig. 9.12. Mechanical properties of technically used carbon fibres from different
suppliers [56, 100, 134, 141]. The two types of fibre differ in their manufacturing
process

(a) Basal planes in graphite (b) Arrangement of the basal planes in high-
strength carbon fibre

Fig. 9.13. The basal planes of graphite are arranged in parallel to the fibre axis in
carbon fibres. In high-strength fibres, the different regions are connected, rendering
slip of the planes past each other more difficult (after [29, 97])

hexagonal lattice. The bonds within the hexagonal planes are strong, those
between the planes are much weaker (see figure 9.13(a)). The sheets or layer
planes can easily slide apart, explaining why it is possible to draw pictures
with charcoal sticks.

The microstructure of the high-stiffness carbon fibres is similar to that
sketched in figure 9.13(a), with the sheets arranged almost perfectly along the
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fibre axis. Because the covalent C-C bonds within the sheets are extremely
strong, a large Young’s modulus in fibre direction results. A strong fibre tex-
ture is thus key to the large elastic stiffness.

However, the problem with this microstructure is that the basal planes
are only weakly bonded to each other because the bond strength between
them is small. Accordingly, the stiffness transversally to the fibre direction is
very low (about 6 GPa). Furthermore, this reduces the fibre strength and the
interfacial strength between fibre and matrix. To achieve maximal strength,
a microstructure is used where the sheets are interwoven, with cross-links
between the sheets hampering shearing (see figure 9.13(b)). Because the sheets
are oriented obliquely to the fibre axis in this configuration, the stiffness is
reduced. Carbon fibres thus have to be optimised either for strength or for
stiffness.

These two microstructures are produced in two different processes. One
process starts with polymer fibres, usually made of polyacrylonitrile
(pan). The other process uses pitch produced during refinement of min-
eral oil. Accordingly, the fibres are called pan fibres, with high strength,
and pitch fibres, with high elastic stiffness (figure 9.12). Although car-
bon fibres can be rather cheap at 25AC/kg, high-performance fibres can
cost as much as 1000AC/kg due to the involved production process.

Because of their high strength, the energy absorption until fracture
of high-strength fibres is rather large. For example, a metal with a yield
strength of 700MPa has to be plastically deformed by 10% to achieve
the same energy absorption as a fibre with Rm = 7000 MPa and a
fracture strain of 2%.10

The strength of the fibres is also determined by their diameter because a
thinner fibre contains smaller defects. To achieve a strength of 2000 MPa, a
diameter of 10 µm is required, which has to be reduced to 5 µm for a strength
of Rm = 6000 MPa.

Reducing the fibre diameter has some disadvantages as well. It eases buck-
ling or kinking of the fibres, so that the shear or compressive strength of the
composite does not increase as much as the tensile strength does or may even
decrease. This limits the applicability of thin fibres.

A further important point is that the fracture strain of high-strength car-
bon fibres is about 2% although they deform only elastically. Considering
that the strains in the polymer matrix locally exceeds that of the fibre (see
figure 9.4), we see that the fracture strain in the matrix has to be rather large.
To avoid crack formation in the matrix, its fracture strain should be about
twice that of the fibre i. e., 4% to 5%. Currently available duromers do not
10 To arrive at this number, it has to be kept in mind that a perfectly plastic material

can absorb twice as much energy as a linear-elastic material at identical maximum
stress and strain.
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meet this requirement, reducing the permissible strain. Thus, the full strength
of the fibres can often not be exploited (see also exercise 29).

Polymers can also be strengthened using polymer fibres. As already ex-
plained in section 8.4, high strength polymer fibres can be produced by draw-
ing the chain molecules in fibre direction (see figure 8.20 and section 8.5.2).
Commonly used fibres are based on aramid or polyethylene. As the density of
carbon bonds can never be as high as that in carbon fibres because of the side
groups, it is easily understood that the mechanical properties of polyethylene
fibres are inferior to that of carbon fibres.

Polymer fibres are viscoelastic even at room temperature. Strength and
stiffness are time- and temperature-dependent, a fact that has to be taken
into account in the design process. In glass fibres, this is the case only at
temperatures of about 200℃, well beyond the service temperature of polymer
matrix composites. Carbon fibres are even more stable. Time-dependent be-
haviour causes a hysteresis between applied load and observed stress that is
especially important under cyclic loading (see section 10.4).

The matrix

Although most of the mechanical load is borne by the fibres, there are still
several requirements for the mechanical properties of the matrix. Its fracture
strain should be sufficiently large to avoid premature damage of the compos-
ite by crack formation in the matrix. Its elastic stiffness should be as large
as possible to achieve a sufficient support of the fibres under compressive
loads and to avoid buckling or kinking of the fibres. Finally, its mechanical
behaviour should remain unchanged under different environmental conditions
(humidity, temperature, irradiation). Unfortunately, these requirements are
partially contradictory. The fracture strain of a duromer matrix, for exam-
ple, can be increased by decreasing the cross-linking density. This, however,
reduces the elastic stiffness. Large fracture strains can also be achieved by
using thermoplastic matrices which are considered for aerospace applications
for this reason. However, they are less temperature-resistant than duromers
and are more difficult to manufacture because they cannot be produced by
curing a resin and thus have to be processed at higher temperatures.

Depending on the application, different matrix materials are used. Among
the duromers, most common are polyester and epoxy resins. Thermoplastic
matrix materials are polyethylene (pe) and polypropylene (pp), but the use
of thermoplastics with aromatic rings on the chain and thus with increased
temperature stability also grows. One example is polyetheretherketone (peek),
characterised by high toughness and a glass temperature of about 150℃.

Composite properties

It was already stressed that the properties of fibre and matrix have to be
carefully adjusted to obtain optimal properties of the component under me-
chanical loads. Under tensile loads, the fracture strain of the matrix has to be
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Table 9.2. Increase of Young’s modulus and tensile strength of a duromer matrix
(polyester resin) by addition of glass fibres with a volume fraction of 65% to 70% [77]

type of fibre E/GPa Rm/MPa

none 3.5 90
short fibres, irregular 20 190
short fibre, oriented at ±7◦ 35 520
continuous fibres, uniaxial 38 1 300

sufficient for the chosen fibre material. Although cracks in the matrix do not
reduce the strength of the component significantly, they can cause consequen-
tial damage by penetration of water or other media. In applications with high
safety requirements, for example in aerospace industry, the permitted total
strain of the composite is limited to a value well below the fracture strain of
the fibres for this reason. Because duromer matrix composites are viscoelastic
and have no plastic regime, this reduces the permitted stress accordingly. If,
for example, the permitted strain is limited to half of the fracture strain, only
50% of the fracture strength can be exploited. This limitation is a crucial
reason for the high interest in matrix materials with large fracture strain and
temperature stability.

Humidity also has a strong influence on the composite’s mechanical be-
haviour because it changes the properties of the matrix as already discussed
in section 8.8. The strength of the matrix decreases whereas its failure strain
increases with increasing water content. Some residual humidity can therefore
be advantageous in composites with a duromer matrix. Glass or carbon fibres
do not absorb any water. If the polymer matrix swells, large residual stresses
can be generated. This can also happen in polymer fibres. Aramid fibres, for
example, do absorb water, but due to their anisotropic microstructure, they
swell mainly in radial direction, also causing large residual stresses.

Short-fibre reinforced polymer matrix composites

The strength and stiffness that can be obtained in short-fibre reinforced poly-
mer matrix composites are well below that of long-fibre reinforced materials.
Depending on the chosen processing route, the fibres can be oriented in loading
direction or irregularly (see section 9.1.1).

The influence of the fibre direction on the mechanical properties can be
seen from table 9.2 for the example of a glass-fibre reinforced duromer matrix.
Young’s modulus is strongly increased even when irregularly oriented fibres
are added. Directing the fibres further increases the stiffness. Using continuous
instead of directed short fibres has no significant effect.

Relations are different concerning the tensile strength: Although irregu-
larly oriented short fibres significantly increase the tensile strength, their effect
is much smaller than that of directed fibres. The strength further increases
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by more than a factor of two when continuous fibres are used because the
length of the short fibres is below the critical length.11 Even if the fibres are
larger than the critical length, it is experimentally observed that a further
increase in fibre length increases the tensile strength [122] because local weak
points, caused by irregularities in the fibre distribution, determine the tensile
strength.

Mechanically, it is thus best to use fibres that are as long as possible. This,
however, is limited by processing technology. For example, long fibres may
break or clog the nozzles in injection moulding. Processing technology also
limits the volume fraction of short fibres, usually to values that are smaller
than in long-fibre reinforced composites.

The same materials can be used as in long-fibre reinforced polymer ma-
trix composites. Short-fibre reinforced polymers are useful in many applica-
tions where unreinforced polymers are not sufficient. The design of injection
moulded components made of short-fibre reinforced polymers is complicated
by the fact that the orientation of the fibre is determined by the fluid flow
(see section 9.1.1) and can be irregular within the material.

9.4.2 Metal matrix composites

Metals are especially attractive as matrix material in a composite. As the frac-
ture strain of the matrix is larger than that of common fibre materials, the
fibre strength can be fully exploited, and the local strain concentration near
the interface (see section 9.3.2) is irrelevant for the composite strength. Since
the adhesion between fibre and matrix is frequently strong in metal matrix
composites, the maximum interfacial shear stress is usually limited by the
metal’s yield strength and is correspondingly large. The critical fibre length
is thus small and even short fibres result in a high strengthening effect. The
large Young’s modulus and yield strength of the matrix also lead to a high
compressive strength because bending or kinking of the strengthening fibres
is avoided (see section 9.3.5). Metal matrix composites can be used at higher
temperatures than polymer matrix composites because the temperature sta-
bility of the matrix is larger.

The fibres determine the mechanical properties of the composite not only
by load transfer, but also by additional effects: Strengthening particles or
fibres can pin grain boundaries during processing of the material and thus
reduce grain size. This increases the strength by grain boundary strengthening
(see section 6.4.2) at low temperatures. The dislocation density can also be
increased by adding fibres: If the composite is cooled from the required high
processing temperatures, differences in the coefficient of thermal expansion
can cause plastic deformation in the vicinity of the fibre. This increases the
strength, but also causes residual stresses which may reduce the strength.
11 The maximum interfacial shear stress in polymer matrix composites is determined

by the adhesion between fibre and matrix, not by the yield strength of the matrix.
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A further increase in dislocation density occurs during plastic deformation
because plastic deformation is usually limited to the matrix, leading to a
formation of dislocation loops around the fibres (see also section 6.4.4). The
Orowan mechanism (see section 6.3.1 and figure 6.45), which would impede
dislocation movement, is not relevant, though, because the fibre diameter and
distance are too large.

Fibre materials in metal matrix composites are limited to those with a
sufficiently high melting temperature because they have to withstand high
processing temperatures. Possible materials are carbon, ceramics (for example
aluminium oxide or silicon carbide), and high-melting point metals like boron
or tungsten. Suitable matrix materials are mainly the light metals aluminium,
titanium, and magnesium.

Aluminium is the most frequently used matrix material due to its rather
low melting point (depending on the alloy, about 600℃ to 660℃) which
eases the processing, but also because of its high ductility. In applications,
it is not only the strengthening, but also the increase in stiffness that is at-
tractive since Young’s modulus of aluminium is rather low (approximately
70 GPa). Adding Al2O3 long fibres with a volume fraction of 50% increases
its value to 200 GPa [121]; by using carbon fibres, a stiffness of 400 GPa can
be achieved [54].

As expected, long-fibre reinforced materials have the best mechanical
properties, but are very expensive to produce. The strength values that can
be achieved are impressive. For example, an aluminium matrix composite
strengthened with continuous silicon carbide fibres can have a room tempera-
ture tensile strength of more than 1400 MPa, which even at a temperature of
425℃ decreases only to 1050 MPa [49]. If titanium is used as matrix material
instead, the strength at room temperature does not increase much because it
is determined by the fibre material. However, due to the high melting point
of titanium, the material can be used at higher temperatures and the tensile
strength at 600℃ is still about 1000 MPa [49].

Due to their high specific strength and stiffness, long-fibre reinforced alu-
minium matrix composites are attractive in aerospace applications. The high-
gain antenna boom of the Hubble Space Telescope, for example, is made from
a carbon-fibre reinforced aluminium matrix composite [114]. Aluminium ox-
ide reinforced aluminium matrix composites are also suitable for push rods
in motorcycle engines and for electrically conductive and mechanically loaded
connectors on power poles [1].

Short-fibre reinforced metal matrix composites are significantly less ex-
pensive than long-fibre reinforced materials and can thus be used in automo-
tive engineering or in sports equipment. For example, short-fibre reinforced
aluminium-silicon carbide composites can be used as pistons in diesel engines
at elevated temperatures [49]. Golf clubs and bicycle components can also
be manufactured from aluminium matrix composites. Frequently, whiskers
(see section 6.2.8) are used as short fibres because of their high strength and
favourable aspect ratio.
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The stiffness and strength of metals can be increased not only by adding
fibres, but also using particles. In contrast to fibres, load is transferred also
at the front and back end of the particle, not only by shear stresses. In an
aluminium-silicon carbide composite, for example, the tensile strength can be
as high as 700 MPa.

Metal matrix composites can be interesting due to other properties as well:
The coefficient of thermal expansion of a metal can be strongly reduced by
adding carbon fibres and may even become negative.12 This is important if the
component may not distort on thermal loading or when the material has to be
joined to a ceramic because the coefficient of thermal expansion of ceramics
is usually much smaller than that of metals (see section 2.6). The thermal
properties are also of interest in copper-carbon composites because copper
has a large thermal conductivity, but is mechanically rather weak. Carbon is
especially suited as fibre material not only due to its stiffness and strength,
but also because of its high thermal conductivity that may even exceed that
of copper.13

9.4.3 Ceramic matrix composites

As we saw in chapter 7, ceramics have the attractive properties of high temper-
ature resistance, high strength and stiffness, low density, and high resistance
against many aggressive media. Their main disadvantage is their low fracture
toughness and the resulting sensitivity to small defects. The main objective
in strengthening ceramics with fibres is thus to increase the fracture tough-
ness. It can take values of up to 30 MPa

√
m [25,149], approximately ten times

larger than in most unreinforced ceramics. Furthermore, using a fibre compos-
ite can also increase the Weibull modulus to about 30, reducing the scatter of
strength and thus easing component design.

Suitable fibre materials in ceramic matrix composites are ceramics (for
example aluminium oxide or silicon carbide), carbon, and high-melting point
metals like boron or tungsten (see table 9.1). In short-fibre reinforced ceramics,
whiskers are commonly used because longer irregular short fibres may decrease
the tensile strength, though they increase the fracture toughness [25]. The
most frequently used matrix materials are aluminium oxide, silicon carbide,
or silicon nitride.

Because the increase in fracture toughness is the main objective of using
ceramic matrix composites, a pull-out of the fibres must be favoured instead
of fibre fracture (see section 9.3.3). The strength of the interface between fibre
and matrix thus must not be too large to avoid fibre fracture. On the other
hand, it must be strong enough to enable load transfer to the fibre and to
12 This is possible because carbon fibres have a negative coefficient of thermal ex-

pansion in fibre direction. The coefficient in the transversal direction is positive.
13 This is due to the electrons in the basal planes of the graphite, which are highly

mobile, similar to those in a metallic bond.
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ensure a sufficient energy dissipation during pull-out of the fibres. Chemical
bonding between fibre and matrix is therefore usually not desired because it
would produce a high-strength interface. Fibre and matrix material thus have
to be adjusted to ensure that no chemical reactions occur even at the rather
high processing temperatures required.

To design the interfacial properties, the fibres can be coated before the
composite is produced by applying thin coatings with a thickness between
0.1 µm and 1 µm. A graphite layer of 1 µm thickness on a fibre based on silicon
carbide (called Nicalon), for example, can reduce the interfacial shear strength
from 400 MPa to 100 MPa [28].

Furthermore, care has to be taken to ensure a smooth surface of the fibre.
Even without chemical bonding between fibre and matrix, a rough surface may
impede the pull-out of the fibre by mechanical clamping in the matrix [28].

The coefficient of thermal expansion of fibre and matrix should also not be
too different to avoid large thermal stresses during cooling from the processing
temperature. Especially problematic is the case of the coefficient of thermal
expansion of the matrix being larger than that of the fibre, for the matrix will
then shrink onto the fibre and mechanically clamp it, making pull-out difficult.
If, on the other hand, the coefficient of thermal expansion of the fibre is larger,
the matrix will be under compressive stress in axial fibre direction. This can
be advantageous because it impedes the propagation of cracks, as long as the
stresses in the fibre do not become too large. To avoid local thermal stresses,
a coating interlayer between fibre and matrix may be helpful.

In ceramic matrix composites, the fracture strain of the matrix is usually
smaller than that of the fibre, resulting in the matrix to fail first. The stress-
strain diagram (figure 9.10) is more similar to that of a material with an
apparent yield point (figure 3.5(b)) than to that of a standard ceramic. To
design with the composite, the fracture strength of the matrix can therefore
safely be used to determine the maximum permissible stress in the compo-
nent because no catastrophic failure will ensue if the load is exceeded. The
composite thus has a higher failure tolerance.

Due to the excellent high-temperature properties of ceramics, ceramic ma-
trix composites are mainly used in aerospace industry and in power engineer-
ing. For example, components for gas turbines, rocket engines, or heat shields
(e. g., in the Space Shuttle) can be made of ceramic matrix composites. They
may also be used in brake discs in aeroplanes or in upmarket cars. One exam-
ple are the brake discs of the Boeing 767, manufactured from a carbon-carbon
composite. Compared to a conventional brake disc, the mass could be reduced
by almost 40% [28].

If market volume is taken as a measure, the most important application of
ceramic matrix composites are cutting tools made of SiC-whisker reinforced
aluminium oxide for cutting of hard-to-machine materials, especially nickel-
base superalloys and hardened steels [25]. Compared to tungsten carbide re-
inforced hard metals, their wear and temperature resistance is larger. In ma-
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chining steels, one problem is that carbon may diffuse from the silicon carbide
into the steel, causing eventual failure of the tool.

∗ 9.4.4 Biological composites

Composites are frequently used by organisms in nature to meet the require-
ments of the environment. In this section, we will discuss three naturally
occurring composites.

Different from most man-made materials, biological materials are often
characterised by their water content. The mechanical properties of wood or
bone in the natural i. e., humid, state are vastly different from that of the dried
materials. This requires some effort in testing biological materials because it is
difficult to control the water content in the laboratory with sufficient precision.

∗ Wood

Wood is made of plant cells elongated in the axial direction of the tree or
branch. The mechanical properties of wood are determined by the cell walls
which are a composite of a natural polymer matrix with cellulose fibres [9,
144]. Cellulose is a polysaccharide, a chain molecule with sugar molecules as
monomers.14 The cellulose molecules have a degree of polymerisation of about
104 and are arranged in microfibrils with a diameter of 10 nm to 20 nm, with
a high crystallinity. The bonds between the cellulose molecules are hydrogen
bonds and are very strong due to the ordered structure in the crystalline
regions. Up to now, Young’s modulus of the crystalline regions can only be
estimated theoretically, taking a value of about 250 GPa, whereas the modulus
of the amorphous regions is about 50 GPa. The surrounding matrix comprises
an amorphous phenylpropanol duromer, called lignin, hemicellulose, a short-
chained cellulose variant, water, oils, and salts. The volume fraction of cellulose
in wood is about 45%, the lignin and hemicellulose content is about 20% each.

The cellulose fibres are situated in the cell walls of long, tube-shaped cells,
directed in the axial direction of the tree. Within the cell walls, they are
arranged in different layers (see figure 9.14). The outer, primary cell wall,
contains irregularly arranged fibres. The next layer, the secondary cell wall,
consists of three layers. The cellulose fibres in the outer and inner layer are
oriented transversally to the cell direction (and the main loading direction),
in the medial layer of the secondary cell wall, they are arranged helically,
slightly inclined to the longitudinal direction. This helical arrangement of the
fibres in the medial cell wall increases the strength because, under tensile
loads, the fibres are straightened and have to slide against each other. This is
similar to the carbon fibres discussed above, where the non-perfect alignment
in loading direction also serves to increase the strength (see section 9.4.1, page
14 There is another polysaccharide, chitin, that is used as ‘engineering material’ in

nature. Most biological polymers, however, are proteins.
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primary cell wall

secondary cell wall}

Fig. 9.14. Arrangement of cellulose fibres in the cell wall of wood cells. The diameter
of the cells lies between 20 µm and 40 µm, their length between 2mm and 4mm.
Simplified illustration after [9, 144]

316). Nevertheless, it is much easier to split wood parallel to the fibre than
transversally because the crack can run between the cells.

As all fibres, cellulose fibres can bear higher loads in tension than in com-
pression because the fibres can buckle or kink under compressive loads. The
arrangement of the cellulose fibres in the outer and inner layer of the sec-
ondary cell wall ensures that they are loaded in tension if the wood as a
whole is loaded in compression and thus increase the compressive strength.
The compressive strength of wood, however, is about 30 MPa, approximately
one third of its tensile strength.

The elastic stiffness of wood is much smaller than the theoretical stiffness
of single cellulose fibres. This is due to the orientation of the fibres which
differs from the loading direction as explained above, but also to the volume
fraction of the cell walls which comprise only about 25% of the total volume.
Young’s modulus of wood is thus only about 10 GPa in longitudinal direction.
Although this is a rather low value, wood is an attractive material for light-
weight applications because its density is rather small (with values between
0.2 g/cm3 and 1.4 g/cm3). The anisotropy of wood can be avoided by using
plywood or flake boards.

Trees can react to external stresses by adapting their growth. If a tree
is loaded asymmetrically (in bending), for example by wind loads or
due to growth on inclined ground, it will form so-called reaction wood.
In softwoods (as found in conifers), the reaction wood forms on the
side that is under compressive loads, in hardwoods on the tensile side.
This reaction wood creates residual (compressive or tensile) stresses
that tend to straighten the tree [96].

Even in a straightly grown tree, the wood is pre-stressed: In the
centre of the tree, stresses are compressive, near the bark, they are
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Fig. 9.15. Structure of mother-of-pearl (nacre). Flat aragonite platelets are stacked
in a staggered way. The organic matrix lies between the platelets (after [145])

tensile. This has the advantage that these stresses are superimposed to
external stresses under bending (for example due to wind loads). The
residual stresses thus increase the tensile and decrease the compressive
stresses. Because the compressive strength of wood is smaller than the
tensile strength, this results in a higher load capacity of the tree.

∗ Nacre

Bivalves, snails, and cephalopods, biologically united as molluscs, often pro-
tect themselves with hard shells. These shells are a composite, comprising an
organic matrix with included ceramic particles, with a particle volume fraction
of 95% or even more [144].

Because of the high ceramic volume fraction, the mechanical properties
of the shells are mainly determined by those of the ceramic. The ceramic
component is aragonite, a rhombic crystal modification of calcium carbonate
CaCO3, forming prismatic crystals. Young’s modulus of aragonite is approx-
imately 100 GPa, its fracture toughness is rather low, with a value of about
0.5 MPa

√
m.

There are different shell microstructures in different species. In this section,
we only discuss the so-called nacre or mother-of-pearl structure, found, for
example, in the pearl oyster. In nacre, the ceramic takes the shape of polygonal
aragonite platelets with a diameter of approximately 5 µm (see figure 9.15).
The thickness of the aragonite platelets is only 400 nm. The matrix in between
the platelets is organic and is very thin, with a typical thickness of only 20 nm.

The mechanical properties of nacre are highly anisotropic due to the lay-
ered structure. If Young’s modulus of a shell is measured in the plane of the
platelets using a three-point bending test, the result is about 50 GPa. Of much
higher interest is the fracture toughness, for it can be as high as 10 MPa

√
m,

twenty times larger than that of the ceramic component, if the direction of
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crack propagation is perpendicular to the platelets (vertical direction in the
figure).

This high fracture toughness is caused by several mechanisms: Single ara-
gonite platelets are thinner than the critical crack length of aragonite. At
a stress of about 150 MPa, the tensile strength, the critical crack length is
about 3.5 µm, according to equation (5.2). Therefore, they cannot contain
critical cracks. The low fracture toughness of the organic matrix causes a
crack to be deflected on reaching a platelet and to propagate around them.15
Additionally, there may be pull-out of the platelets. Nano-asperities on the
platelets cause additional dissipation during sliding of the platelets. In total,
the work needed to create fresh surface in nacre is about 1600 J/m2 if the
crack propagates perpendicularly to the platelets; if it propagates in parallel
to the platelets, it is only 100 J/m2, but still larger than in pure aragonite,
where the value is about 2 J/m2, according to equation (5.17).

If we compare the increase in fracture toughness that has been achieved in
nacre to those obtained in technical ceramics (see table 7.4), it is rather obvi-
ous that it would be highly desirable to technically exploit the same strength-
ening mechanisms. This is one reason for the strong scientific interest in nacre.
The main aim of these studies is to create artificial materials with similar prop-
erties. Such materials, which mimic the properties of biological materials, are
called biomimetic materials.

∗ Bone

Bone is a biological material of special importance. On the one hand, bones
are the characteristic trait of vertebrates which almost exclusively occupy all
ecological niches for large animals. Thus, it is of biological interest to under-
stand why having bones is evolutionary advantageous. Even more important
is that understanding bone structure enables us to treat or heal bone illnesses
or injuries. For these reasons, the structure and mechanical behaviour of bones
have been intensely studied [36].

Bone has a complex hierarchical structure on several different length scales.
The main components of bone are a ceramic, (modified) hydroxyapatite, and
a polymer, the protein collagen. Furthermore, bone contains other proteins,
protein-sugar compounds, and, as all biological materials do, water.

Collagen is a protein containing about 1100 amino acids in an exactly
defined sequence. This sequence is determined by the genetic code within the
dna. If we consider that there are 20 different amino acids used in common
proteins, we see that the number of possible proteins is huge and that an
exact control of the amino acid sequence is extremely important to ensure
the correct spatial structure of the macromolecule. Collagen molecules form
a helical structure, a long, almost straight helix. Three of these helices are
15 This is similar to the crack propagation mechanism in sintered silicon nitride, see

page 249.
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Fig. 9.16. Hierarchical structure of adult human bone. Tropocollagen molecules are
arranged in a so-called quarter-stagger structure, with platelets of hydroxy apatite
in between. The fibres formed by this structure unite to fibre bundles which in
turn form lamellae. The major part of the bone consists of osteons made of ring-
shaped lamellae. Near the bone’s surface, the lamellae are parallel to the surface.
The orientation of the fibre bundles within the lamellae depends on the mechanical
loads on the bone; in tensile regions, they are aligned in the loading direction as
shown in the figure, in compressive regions, the fibre bundles of some lamellae are
perpendicular to the loading direction

intertwined to form a larger component, the tropocollagen molecule, with a
length of 296 nm.

The tropocollagen molecules themselves are aligned in parallel in bones
and tendons, being shifted by 67 nm in adjacent layers. Within each layer,
there are gaps between the molecules that serve as nucleation sites for the
crystallisation of the ceramic hydroxyapatite crystals (see figure 9.16).

Hydroxyapatite has the chemical composition Ca10(PO4)6(OH)2. In the
body, its composition slightly differs from this formula (with the resulting
material frequently called being dahllite), for some calcium ions are replaced
by other ions, and fluorine ions replace some of the (OH)− ions.16 Because
of their small size, it is rather difficult to determine the exact shape of the
hydroxyapatite crystals in bone, which may also be different in different bones.
Typically, they are platelet-shaped, with a thickness of only 5 nm and an edge
length between 20 nm and 100 nm. These platelets are situated between the
tropocollagen molecules (see figure 9.16).
16 These fluorine ions reduce the solubility of hydroxyapatite in acidic media. To

protect our teeth, which have a microstructure very similar to that of bone, tooth
paste contains fluorides that improve the acid resistance of the tooth enamel.
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This composite of tropocollagen and hydroxapatite forms fibres that unite
to form fibre bundles. The fibre bundles are the building blocks of the next
hierarchical layer. Depending on the bone type, the fibre bundles may be
arranged irregularly, uniaxially, or in a lamellar structure, the latter structure
being the one most common in adult humans. Within the lamellar bone, the
fibres are arranged in parallel in layers; the fibre bundles in adjacent layers
are rotated relative to each other, similar to the fibre layers in a laminate (see
section 9.1.1).

In adult humans, these lamellae form tube-shaped structures, called os-
teons or Haversian systems. A single osteon has a diameter of about 200 µm
and a length of a few millimetres or centimetres. In long bones, like limb bones,
they are parallel to the bone axis. In the centre of each osteon, there is a blood
vessel that supplies the cells within the bone with nutrients.

How the fibres in the lamellae of an osteon are arranged depends on the
mechanical load applied to the bones. Long bones are mainly loaded in bend-
ing.17 On the tensile side of the bone, the fibres are oriented in longitudinal
direction, on the compressive side, they are arranged either in circumferential
direction or alternating between longitudinal and circumferential direction.
The arrangement of the lamellae, like that of the osteons, is thus optimised
to the external load.

Young’s modulus of bone depends on the volume fraction of the hydroxy-
apatite and on the osteon structure. In the stiffest direction, it is between
12 GPa and 25 GPa. If the strains exceed values of about 0.5%, bone starts to
deform by microcracking. The fracture strain is usually 2%, but in some spe-
cialised bones that are loaded in impact (for example, in the antlers of deer),
it may be as high as 10%. The strength of normal bone is approximately
150 MPa in tension and 250 MPa in compression. The peak loads under nor-
mal loading (walking, running, climbing a staircase) are approximately two to
four times smaller than this value.

To ensure a favourable orientation of the fibres, bone is permanently re-
built and adapted to the actual loads. Specialised cells within the bone, the
osteocytes, measure the loads and initiate the rebuilding. The old bone is
removed by acid-excreting cells (osteoclasts) and is then rebuild by other
cells (osteoblasts), forming new osteons. The rebuilding of the bone not only
ensures its adaptation to changing load patterns, but it also serves to heal
microcracks that may have been formed during excess loading. As long as
living bone is not overloaded, it is therefore completely fatigue resistant.

If the load on a bone is changed compared to the load patterns previously
encountered, bone material is added or removed. New bone is formed, for
example, when a new sports training is begun; bone is removed if it is not
loaded anymore, for instance due to long-time illness or to the insertion of
implants. Because Young’s modulus of bone is markedly smaller than that
17 This is the reason why long bones are hollow and are filled with bone marrow

– in mammals – or with air sacs – in birds –, for weight can be saved this way.
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of all common implant materials, load is transferred to the implant and the
bone is thus partially unloaded. This can cause bone removal, leading to a
loosening of the implant. Therefore, large efforts are invested in developing
implant materials with a low Young’s modulus. Titanium alloys are the most
promising candidates because titanium not only has a small Young’s modulus,
but is also highly biocompatible, usually not causing adverse reactions in the
body.
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Fatigue

So far, we only considered static and monotonically changing loads. In real-
world service, components are frequently bearing cyclic loads, with the load
being time-dependent, but repetitive. Examples are revolving bending loads
on rotating shafts, (resonance) vibrations in machines, and starting and stop-
ping processes, for example in turbines.

The ongoing repetition of identical or similar loads strongly reduces the
loads the material can bear. Furthermore, failure is not preceded by large
plastic deformation even in ductile materials, rendering it more difficult to
detect component damage than under static loads – the danger of catastrophic
failure is thus rather large. An example of this is the turbine shaft shown in
figure 10.1 that did not show any signs of damage caused by crack propagation
under cyclic loads until it fractured catastrophically. For these reasons, it is
important to consider the fatigue behaviour of materials i. e., their behaviour
under cyclic loads.

10.1 Types of loads

Cyclic loads can occur in several ways: The load may be determined by forces
e. g., centrifugal forces, or by displacements or prescribed strains e. g., thermal
strains. Furthermore, frequency or amplitude of the load may differ. Finally,
the number of cycles to failure or the number of cycles the component will be
exposed to are important.

As an example, consider the engine of a car. All of its rotating parts, for
example the crankshaft or the piston rods, are cyclically loaded and will face a
large number of cycles during service. If the car drives a distance of 150 000 km
on the highway at a speed of 100 km/h and a rotation speed of 3000 min−1,
the total number of cycles is 2.7×108. To ensure survival of the engine, it will
be designed for an infinite number of cycles, the so-called fatigue limit.

Some additional fatigue loads will occur in the engine when it is started
since the component walls in the combustion chamber (e. g., cylinder block,
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Fig. 10.1. Fatigue failure of a steam turbine shaft made of 28NiCrMoV85. The
fragment shown has a mass of about 24 t. The crack started at a material defect
within the shaft [3]

pistons) will initially be heated at their surface only, causing differential ther-
mal strains between their cold centre and the hot surface that have to be
compensated by mechanical (elastic or plastic) strains. This causes thermal
stresses. During shut-down, the process is reversed. The effect of this can be
significant: If we assume a mean travelled distance of 50 km, the number of cy-
cles in the example is only 3000, with each cycle corresponding to one starting
process. It would cause useless oversizing to design the engine for an infinite
number of starting cycles, for the number during its life time is rather limited.
For this load case, the motor is only designed to survive a finite number of
cycles and thus may be loaded beyond the fatigue limit.1

As already stated, service loads often have a complex time-dependence.
One example is the time-dependent load on car chassis parts during driving on
rough roads (figure 10.2). It would be rather expensive to simulate all possible
load cases in laboratory experiments. Usually, investigations are restricted to
representative cases, for example the sinusoidal and triangular load curves
shown in figure 10.3. These curves can be characterised by the minimum
stress σmin, the maximum stress σmax, and the mean stress

σm =
σmax + σmin

2
, (10.1)

the stress amplitude σa
2

1 The first gear of a gear box in a car is another example. As it is used only for a
small amount of time, it is also designed for finite life only.

2 Sometimes, the term ‘alternating stress’ is used for σa, while, in the strict sense,
this is occupied for a certain load case (see below).
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Fig. 10.2. Measured acceleration of the lower control arm in the chassis of a car
driving along a rough road. The load of the component is caused by this acceleration
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Fig. 10.3. Typical load curves

σa =
σmax − σmin

2
,

the stress range ∆σ = σmax−σmin, and the period T . One period corresponds
to one cycle or alternation of load. To reach a number of stress cycles N , a
time of t = NT is needed.3

If the stress changes its sign during a cycle, entering the tensile and the
compressive regime, it is denoted as reversed (sometimes also alternating)
stress. If the load is completely tensile or completely compressive throughout
the cycle, it is characterised as fluctuating or pulsating stress. To characterise
the type of loading, an additional parameter is frequently used, the stress
ratio R, often simply called the R ratio. It is defined as4

3 Sometimes, the number of cycles N is called ‘stress reversals’. This, however, is
erroneous because there are two stress reversals during each cycle.

4 Sometimes, this definition is changed to R = |σ|min/|σ|max, rendering it impossi-
ble to distinguish tensile and compressive pulsating loads.
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Table 10.1. Important R ratios

pulsating in compression
¾ > 0

¾ < 0
σmax < 0 R > 1

zero-to-compression
¾ > 0

¾ < 0
σmax = 0 R = −∞

reversed
¾ > 0

¾ < 0
σm < 0 −∞ <R < −1

fully reversed
¾ > 0

¾ < 0
σm = 0 R = −1

reversed
¾ > 0

¾ < 0
σm > 0 −1 <R < 0

zero-to-tension
¾ > 0

¾ < 0
σmin = 0 R = 0

pulsating in tension
¾ > 0

¾ < 0
σmin > 0 0 <R < 1

static
¾ > 0

¾ < 0
σmin = σmax R = 1

R =
σmin

σmax
. (10.2)

Occasionally, the so-called A ratio A = σa/σm is used which results in A = ∞
for R = −1, for instance.

If the load is not prescribed by applied stresses, but by other parameters,
for example strains, all parameters are changed accordingly and the type of
loading is characterised by adding a subscript to the R ratio e. g., the strain
ratio Rε = εmin/εmax.

According to equation (10.2), reversed loads correspond to negative R ra-
tios, pulsating loads to positive values5. Table 10.1 summarises the most com-
mon R ratios. Most important are the cases of fully reversed cycling (with
σm = 0 or R = −1), of zero-to-tension cycling (with σmin = 0 or R = 0), and
of zero-to-compression cycling (with σmax = 0 or R = −∞). Therefore, these
cases are frequently used in tables.

Figure 10.4 shows the dependence of the R ratio on the mean stress σm at
constant stress amplitude σa. In general, the R ratio increases with increas-
ing mean stress, with the exception of the transition between reversed and
compressive pulsating loads. This has to be kept in mind in all considerations
involving the R ratio.
5 There is one exception because a pulsating compressive load with σmax = 0 yields

an R ratio of R = −∞.
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Fig. 10.4. Dependence of the R ratio on the mean stress σm

(a) Fatigue fracture of a shaft of a
waggon by unilateral bend-pulsating
stress

(b) Bilateral bend fatigue fracture (di-
ameter of the axle journal 70mm) [90]

Fig. 10.5. Examples of fatigue fracture. The smooth regions of the surfaces, con-
taining beach marks, are caused by fatigue; the rough regions are the surfaces of
final fracture. These regions will be explained in the following sections

10.2 Fatigue failure of metals

In this section, we discuss the mechanisms of fatigue damage and failure in
metals.

The fracture surface of a metal that has failed in cyclic loading has a
characteristic appearance. Figure 10.5 provides two examples of such fatigue
fractures. In almost all cases, a smooth, macroscopically weakly deformed,
region and a rough region can be discerned. This is due to the different stages
of damage evolution under cyclic loads [90]:

• crack initiation6,
6 Frequently, the crack initiation stage is further divided into the two steps crack

formation and micro-crack growth. This is not done here.
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• crack propagation under cyclic load,
• final catastrophic fracture of the component.

In the following sections, we will discuss these stages in turn.

10.2.1 Crack initiation

In most cases, a fatigue fracture is starting at a highly loaded position of
the component. The high load may be caused by an overload, generating
some initial damage in the component that is hard to detect, but may cause
ultimate failure.

Local stress concentrations are often caused by notches (see chapter 4).
Notches may be part of the design (e. g., at bearings or at undercuts), may
be caused during manufacture (e. g., tool marks caused by metal cutting),
or may be due to imperfections in the material (e. g., casting pores, brittle
precipitates).

In section 5.2.3, we saw that microscopic defects or cracks are usually
irrelevant under static loads because they are smaller than the critical crack
length from equation (5.27). If loads are cyclic, much smaller defects, like
casting pores or inclusions, can initiate fatigue cracks. The fatigue strength
of a material is thus much more sensitive to the manufacturing process and
material defects than the static strength.

Metal working (e. g., rolling or forging) is one way to remove defects dur-
ing manufacturing, closing cavities and changing the inhomogeneous casting
microstructure to a fine-grained structure formed by recrystallisation (see sec-
tion 6.4.2). For this reason, components that have been manufactured this
way usually have a higher fatigue limit than cast products.

Metal working processes, however, cannot always be employed. A complex
shape of the component or the additional costs may require to produce the net-
shape by casting. Furthermore, high-strength materials are often not suitable
for metal working. For example, turbine blades of stationary gas turbines
are often produced by investment casting to enable the use of materials with
high strength at service temperature which, however, cannot be forged. These
blades are cyclically loaded because of fluctuations in the gas flow. The blades
of the last stage have a slender shape so that high stresses are generated by
these cyclic loads. To remove casting pores, they are often compacted after
casting by hot isostatic pressing (hip) at temperatures of about 1200℃ and
pressures between 100 MPa and 200 MPa.

Even if the component is initially defect-free, it is not guaranteed that
no cracks will form. Cracks are initiated by a roughening of the surface of
the component under cyclic loads (see figure 10.6) caused by plastic deforma-
tion. This deformation is due to dislocation movement at stresses below the
yield strength Rp0.2, which is insignificant under static loads.7 However, dur-
7 According to section 3.2, the yield strength Rp0.2 is defined as the stress corre-

sponding to a plastic strain of 0.2%. For this, some amount of dislocation move-
ment is necessary.
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N = 200 N = 500

N = 2000 N = 4500

Fig. 10.6. Formation of slip bands in AlMg 3 in a strain-controlled fatigue experi-
ment (Rε = −1, εa = 0.5%, grain size 50 µm). Optical micrograph (after [148])

ing cyclic loading, these small plastic deformations accumulate and initiate a
crack as discussed below. The dislocation movement causes a hysteresis in the
stress-strain diagram (see figure 10.7). The enclosed area equals the dissipated
energy per cycle and unit volume (see section 3.2). If a component is deformed
cyclically, the density and position of the dislocations and thus its strength
change. This is called cyclic hardening or softening and will be discussed in
more detail in section 10.6.5.

Figure 10.8 illustrates how dislocation movement on slip planes can
roughen a surface by forming extrusions and intrusions. Steps on the surface
formed by slip of the material (figure 10.8(b)) are not completely removed
upon load reversal since a dislocation that has moved in one direction will not
necessarily revert to its original position. Instead, another dislocation may
move and cause the plastic deformation, leading to a roughening of the ini-
tially smooth surface. Furthermore, a thin oxide layer of a few nanometre
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Fig. 10.8. Formation of intrusions and extrusions due to cyclic loading. During
the cycles, small irreversible plastic deformations occur on parallel slip bands that
cause accumulation of extrusions and intrusions on the surface. The number of cycles
increases from the left to the right

thickness forms on a freshly created surface in air. Thus, the material cannot
re-weld even if the deformation is completely reversible, and a sharp crack is
initiated.

Altogether, a large number of surface notches form that serve as starting
points for cracks. These cracks propagate into the material, growing along the
crystallographic slip planes. They grow preferentially in grains with slip planes
that are oriented at approximately 45° to the maximum principal stress. The
formation of fatigue slip bands is shown in figure 10.6 in an aluminium alloy
(AlMg 3) under strain-controlled cyclic loading. Figure 10.9 shows extrusions
and intrusions, the initiating points for cracks, at the surface of a ferritic steel.

According to the definitions from section 5.1.1, the newly formed micro-
cracks are initially not loaded in mode I, but in mode II or III. This stage
of fatigue crack propagation is called propagation stage I. During this stage,
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Fig. 10.9. Scanning electron microscope micrograph of extrusions in a ferritic
steel [73]

crack growth is slow [19, 90]. If the crack reaches a grain boundary, it has to
propagate into a neighbouring grain, usually with less favourably oriented slip
systems. This may slow down or even completely stop the crack. Thus, many
initially created cracks are stopped, and only those that accidentally start at
the most favourable conditions grow further.

With increasing crack growth, the stress at the crack tip increases until less
well-oriented slip systems can be activated. This enables the crack to change
its orientation to mode I, perpendicular to the maximum principal stress. The
crack becomes a macrocrack. This stage of the process is called propagation
stage II and will be discussed in the next section. The transition between
stage I and stage II usually occurs at a crack length of approximately 0.05 mm
to 2 mm [130]. Usually, the transition length is smaller in high-strength ma-
terials than in those with low strength. Because the stress concentration is
largest at the largest crack, this crack grows fastest, resulting in one crack
leaving the others behind and dominating the fatigue process. This crack fi-
nally causes failure of the component. Figure 10.10 illustrates the transition
between stage I and stage II.

The initiation cracks needs a long time in smooth specimens loaded with
stresses well below the yield strength, for the amount of dislocation movement
is very small in this case, so that the greatest part of the components life time
is spent during this initial stage. If the surface is hardened, for example by
shot peening (work hardening) or nitriding of steel, dislocation movement near
the surface is impeded further. This increases fatigue life. This argument is
only valid if the propagating crack starts at the surface, not at inner defects.
If the crack initiation occurs at defects, like tool marks or pores, the fatigue
life reduces accordingly.

Microscopic defects do not have a very strong influence on the total life if
the stress amplitude is large and the number of cycles to failure is small (usu-
ally smaller than 104 cycles). In this case, initial cracks form comparatively
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Fig. 10.10. Stages I and II of crack propagation (after
[8, 19,113])

quickly by dislocation movement. The increase in crack propagation rate is
smaller, resulting in a larger part of the life time of the component spent in
propagation stage II. This stage is discussed in the next section.

10.2.2 Crack propagation (stage II)

As we saw in the previous section, a fatigue crack reorients during crack prop-
agation to be perpendicular to the maximum principal stress as soon as a
certain crack length is exceeded. The crack is now loaded in mode I (see fig-
ure 10.11 (a)). Because of the stress concentration, a plastic zone forms in
the direct vicinity of the crack tip (figure 10.11 (b) and (c)), causing a small
crack tip opening and similarly small crack propagation.8 Upon unloading, the
elastic strain in the bulk material is removed, and the crack closes. However,
the crack is widened at the crack tip due to the localised plastic deformation,
resulting in compressive residual stresses. These stresses cause an opposite
plastic deformation and close the crack even at the crack tip (figure 10.11 (d)).
Upon unloading, the crack surfaces touch before the external load is reduced
to zero (figure 10.11 (e)). This is due to the plastic deformation which causes
a roughening of the crack surfaces. Furthermore, the crack often follows the
crystallographic planes within the grains, resulting in roughness on the scale
of the grain size. The compressive stresses are uncritical since they are trans-
ferred at the crack surfaces (figure 10.11 (f)). During a single cycle, there is
thus some crack propagation because the crack does not return to its initial
position.

The tensile load in the next cycle re-opens the crack. Because of the com-
pressive residual stress in the unloaded material, some minimum threshold
8 This was already discussed in section 5.3.3 in the context of elastic-plastic fracture

mechanics, see figure 5.22 2○.
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Fig. 10.11. Model of crack propagation under cyclic loading (after [35, 76]). Upon
loading ((b) and (c)), the region near the crack tip yields. The crack propagates
stably, blunting the crack tip. Upon unloading (d), the elongated crack is compressed.
Because of the deformation, the crack surfaces touch before the external load is zero
(e). After complete unloading, residual stresses remain, compressing the crack (f)

stress is required. External loads that are smaller than the residual stress do
not open the crack and thus cannot cause crack propagation. If the stress
is exceeded, the crack again propagates by a certain increment, resulting in
a crack length that grows with every cycle and thus in considerable crack
growth. Because the crack does not propagate further under static loads, the
crack propagation is stable.

Frequently, the crack propagation can be seen on the fatigue crack surface
as so-called fatigue striations (figure 10.12), with a distance that depends
on the load and is usually between 0.1 µm and 1 µm [90]. This distance is
an approximate measure of the crack propagation per cycle.9 Macroscopically,
the striations are invisible and the fatigue crack surface appears rather smooth.
The formation of striations is due to the plastic deformation near the crack
tip shown in figure 10.11.

Even with the naked eye, so-called beach marks (sometimes also called ar-
rest lines) can frequently be discerned on the fracture surface (see figure 10.5
on page 337). They are due to changes in the load during component service
9 Each striation is generated in exactly one cycle, but not every cycle does generate

a striation.
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(a) Striations in AlCu 5. The striations
are deflected at the Al2Cu particle [90]

(b) Striations in copper

Fig. 10.12. Scanning electron microscope micrograph of striations on two fatigue
fracture surfaces

e. g., a change in the revolution speed, a short-time overload, or a machine
downtime during a weekend. These changes cause local differences in the sur-
face roughness or the surface oxidation that are visible as beach marks. The
arrangement of the beach marks often makes it easy to determine the position
of the initial crack and the crack propagation direction.

Crack propagation in a specimen is also determined by the grain size. The
larger the grains are, the rougher the crack surfaces will be. Therefore, the sur-
faces will touch earlier during unloading, causing larger compressive stresses.
To open the crack again, a larger stress is thus needed. The crack propagation
rate is thus smaller in coarse-grained materials than in fine-grained ones. This
is different in specimens without initial cracks. In this case, the fatigue life of
the fine-grained specimen is larger because its strength is higher due to grain
boundary strengthening, making crack initiation at the surface more difficult.

10.2.3 Final fracture

Final fracture occurs when the crack has grown to a size where the stress
intensity factor (see equation (5.2)) equals the fracture toughness KIc of the
material. The crack propagates unstably throughout the specimen, causing
catastrophic fracture. The appearance of this part of the fracture surface dif-
fers from that created by fatigue crack growth. Macroscopically, the surface is
jagged; microscopically, a dimple fracture surface, a brittle cleavage fracture,
or a mixture of both types results, depending on the material’s ductility (see
section 3.5).
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Even if there is ductile failure, no significant plastic deformation can be
seen macroscopically since plastic deformation concentrates near the crack tip
where the stresses are highest [90].

10.3 Fatigue of ceramics

Contrary to metals, ceramics do not yield plastically when loaded. Therefore,
cracks cannot grow under cyclic loading by localised plastic deformation at
the crack tip. Furthermore, no intrusions and extrusions can form on the
surface of an initially smooth specimen by dislocation movement. Because of
this, many ceramics do not exhibit any cyclic effects i. e., there is no difference
between their behaviour under static and cyclic loads. All loads that they can
bear once, they can bear infinitely many times. For example, this is the case
in fine-grained ceramics with a single phase i. e., many technical ceramics.

If subcritical crack growth occurs in a ceramic (see section 5.2.6), the
crack propagates subcritically during each cycle. This can cause appar-
ent fatigue behaviour, although it is not the number of cycles but the
accumulated loading time that is relevant. This behaviour is frequently
called, rather misleadingly, ‘static fatigue’.

To compare the behaviour of such a ceramic under cyclic loads with
that under static loads, the accumulated loading time of cyclic loading
can be converted to an effective loading time teff , the time that would
cause the same damage under static loads. This is discussed in detail
in Munz /Fett [104].

Nevertheless, some ceramics can fail by cyclic crack propagation. Under cyclic
loads, cracks in the material are opened and closed. If energy is dissipated in
this process, this energy can be used to propagate the crack. If we consider
the stress-strain diagram for cyclic loading, fatigue can only occur if there is a
hysteresis in the diagram. As we saw in section 7.2.5, many of the mechanisms
that increase the crack-growth resistance of a ceramic cause such a hysteresis
(see figures 7.5 and 7.7). This increase in fracture toughness under static
loads thus makes the material sensitive to fatigue, and the strength under
cyclic loads drops below the static strength.

One example for this are ceramics exhibiting crack bridging (see sec-
tion 7.2.2). The crack surfaces rub on each other and dissipate energy dur-
ing opening and closing of the crack. The repeated opening and closing of
the crack surfaces under cyclic loads causes wear of the surfaces, reducing the
crack bridging effect. This can cause cyclic crack propagation. Crack deflection
at grain boundaries can also cause similar bridging effects [69].

Fatigue is also observed in transformation-toughened ceramics, like par-
tially stabilised zirconium oxide (see sections 7.2.4 and 7.5.4), where phase
transformations occur near the crack tip. This effect is attributed to the for-
mation of microcracks in the vicinity of the crack tip [66].
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10.4 Fatigue of polymers

Similar to metals, polymers can deform plastically and thus can fail in a similar
way under cyclic loading. However, the microscopic mechanisms are not the
same as in metals.

If we load a polymer cyclically with a non-zero mean stress, the vis-
coelastic and viscoplastic deformation causes an increase of the strain.
This effect can cause failure under cyclic loads, but this is not true
fatigue, for it is not the number of cycles, but the total loading time
that determines failure.

10.4.1 Thermal fatigue

Polymers deform viscoelastically. Under cyclic loads, the stress-strain curve
upon unloading is not the same as upon loading. Therefore, there is a hystere-
sis between stress and strain, causing energy dissipation during the deforma-
tion, thus producing heat. This hysteresis is discussed in detail in exercise 26.

The heat generated under cyclic loads cannot easily dissipate into the
surroundings because the thermal conductivity of polymers is small. If heat
generation exceeds heat dissipation, the temperature increases in each cycle
until the temperature-dependent strength of the material is exceeded and the
material fails. If the stress is reduced, the heat generation reduces as well, and
the number of cycles to failure increases. For this reason, this phenomenon is
called thermal fatigue. If the stress is reduced further, an equilibrium between
heat generation and heat dissipation will be established without exceeding the
strength.

Thermoplastic polymers fail by plastic yielding under thermal fatigue be-
cause the yield strength decreases with increasing temperature. Elastomers
and duromers can also fail by thermal fatigue due to the reduction of Young’s
modulus with temperature which causes a continuously growing deformation.

Thermal fatigue is observed mainly in stress-controlled loading because the
strain amplitude increases in this case due to the reduction of stiffness with
increasing temperature. The heat generated per cycle thus increases with time.
If the loading is strain-controlled, thermal fatigue is usually not problematic
because the stress decreases in this case.

If thermal fatigue occurs, the load frequency can strongly influence fatigue
life. On the one hand, longer cycles provide more time to dissipate the heat,
on the other hand, Young’s modulus and the size of the hysteresis in the stress-
strain diagram are dependent on the frequency. This frequency dependence
will be discussed in section 10.6.2. If sufficiently long unloading occurs between
the cycles, the generated heat can be dissipated, and there is no thermal
fatigue. The geometry of the component is also important, for it determines
the heat dissipation.
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10.4.2 Mechanical fatigue

If the temperature increase during cyclic loading is sufficiently small so that
no thermal fatigue occurs, the polymer fails by mechanical fatigue. Similar to
metals, we can distinguish the stages of crack initiation and crack propagation.

Cracks can form in a polymer in different ways, depending on the dom-
inating deformation mechanism [130]. Fracture of single chain molecules or
sliding of chain molecules can weaken the material locally and thus serve as
initiating points for cracks. In many polymers (for example, polystyrene, poly-
carbonate, pmma), crazing (see section 8.4.1) plays an important role, as it
does in plastic deformation. Under cyclic loads, crazes may form and grow
even if the loads are comparatively small, until they have grown sufficiently
to act as microcracks. If a crack propagates, the stress concentration near the
crack tip can initiate further crazes (see figure 8.14) that coalesce with the
crack. Because crazing depends on the hydrostatic stress state, the mean stress
is especially important in this case. Alternatively, shear bands may form and
be starting points for microcracks. Similar to metals, fatigue striations (see
figure 10.11) may be generated in polymers due to plastic deformation at the
crack tip [19]. If there are phase boundaries within the polymer, for example,
between the amorphous and crystalline regions of a semi-crystalline polymer
or between chemically different phases in a copolymer, these boundaries may
initiate cracks due to the stress concentration they cause. Nevertheless, the
fatigue strength of semi-crystalline polymers is in most cases superior to that
of amorphous polymers [19].

Whether a polymer fails by mechanical or thermal fatigue is determined by
many factors e. g., the load frequency, the stress level, the temperature, and the
geometry of the component. In general, polymers with weak viscoelastic effects,
which produce only a small amount of heat in each cycle, fail by mechanical
fatigue. Among these are polystyrene and many duromers. Thermal fatigue
is important in materials with a large hysteresis in the stress-strain diagram,
for example polyethylene, polypropylene, and polyamide. Finally, both effects
can interact because the increase in temperature changes not only the static,
but also the dynamic material properties. In this case, the material heats up
initially, and crack propagation sets in afterwards. This phenomenon can be
observed in pmma, pet and polycarbonate.

10.5 Fatigue of fibre composites

In fibre composites, the presence of the fibres can change the fatigue strength
of the matrix in several ways. On the one hand, global effects due to load
transfer and the corresponding change in the stress and strain fields can play
a role, on the other hand, local effects can occur, especially at the fibre-matrix
interface.
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In most cases, the fatigue strength of fibre composites is larger than that
of the matrix alone. If Young’s modulus of the fibre is larger, partially un-
loading the matrix, and if the load is stress-controlled, the reduced stress in
the matrix material may increase fatigue life. This is not the case if the load
is strain-controlled because in this case the increased stiffness of the material
causes an increase in the stress, and fatigue life may be reduced.10 If loaded
perpendicularly to the fibre direction, fatigue life of the composite can be re-
duced compared to the matrix material alone because strains in the matrix
increase and the stress state is triaxial.

The shear stress at the interface between fibre and matrix locally increases
the strain in the matrix (see section 9.3.2). This increased strain may cause
local damage in the matrix and initiate cracks. This is especially important
for short fibres because shear stresses occur only near the fibre ends in long
fibres.

In polymer matrix composites, the fatigue strength is usually larger than
that of the matrix material, provided the fibres are aligned in load direction or
are irregularly oriented. Since the stiffness is larger than in the unreinforced
material, the strain is reduced (if the load is stress-controlled). In a polymer
matrix, this also serves to reduce heat generation and thus further increases
fatigue life [107]. Carbon fibres, with their high thermal conductivity, also
reduce thermal fatigue because they can dissipate localised temperature peaks.
In metal matrix composites, fatigue life is also significantly larger than in the
matrix material if the fibres are aligned to the loads (see also page 365).

Damage in polymer matrix composites and metal matrix composites usu-
ally starts with local detachment between fibre and matrix at weak points,
for example, by fracture of very thin fibres [122]. This may happen already
after only a few cycles. Subsequently, microcracks form, starting from these
damaged regions, by fatigue of the matrix material. Thus, the material is in-
creasingly damaged, a fact that can be observed by a reduction in stiffness.
The component finally fractures when the number of microcracks has become
so large that they coalesce. This failure behaviour is similar to the stochastic
failure discussed in section 9.3.4. In metal matrix composites, this behaviour
is usually observed if the fibres are irregular or arranged in laminates.

If there are tensile and compressive components in the cyclic load (i. e., if
R < 0), fatigue life can be significantly reduced compared to pulsating tensile
loading. The reason is that those fibres whose matrix interface has failed are
sensitive to failure by buckling [131].

Fatigue can also occur in ceramic matrix composites. If a crack propa-
gates under tensile loading, it will be bridged by the fibres and partially un-
loaded (see section 9.3.3). This can cause stable crack growth under static
loading, with the crack not propagating further unless the load is raised (see
10 This would not be true in the idealised case if the fibres were continuous and

loaded directly as in figure 9.1(a). In real-world composites, even continuous fibres
are always loaded by load-transfer from the matrix.
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section 5.2.5). Under cyclic loading, the weak interface between fibre and ma-
trix allows movement between them. Friction occurring in this process can
cause damage, reduce the unloading effect of the fibre, and thus enable the
crack to propagate [29]. Failure usually occurs not by propagation of a single
crack through the material, but by accumulation of damage [28].

10.6 Phenomenological description of the fatigue
strength

In the previous sections, we discussed the failure mechanisms of the different
material classes. Using the example of metals, we discussed in some detail how
cracks may be initiated in a component and how they propagate, until final
fracture occurs. To safely design components, we need tools to describe and
assert their life time. Two different approaches can be used:

In many cases, macroscopic cracks are known or supposed to be present
in the component. Turbine shafts in gas turbines used for power generation,
for example, are tested non-destructively using ultrasonic testing. If no cracks
are detected, it is assumed that the largest crack present in the shaft has a
length equal to the detection limit (usually a few millimetres). In this case, the
methods of fracture mechanics (see chapter 5) can be used to describe crack
propagation. The component is designed to ensure that these (hypothetical)
cracks do not cause impermissible crack propagation.

However, even if no cracks are initially present in the component, it is
not exempt from fatigue failure. Microcracks may, for example, form at the
surface of the component, propagate, and cause ultimate failure as described
in section 10.2 for the case of metals. Thus, we also need methods to assert
the life time of uncracked components.

10.6.1 Fatigue crack growth

If there is a macroscopic crack in a material that may grow upon cyclic loading,
the fatigue life is determined by its propagation rate. This crack is sufficiently
long to be described using the methods of continuum fracture mechanics de-
scribed in chapter 5. Because fatigue crack propagation occurs at much smaller
stresses than propagation under static loads, the plastic zone near the crack
tip is comparatively small. The conditions to apply linear-elastic fracture me-
chanics are thus fulfilled even in ductile materials and small specimens. Thus,
the stress intensity factor K is sufficient to describe the stress field.

For a crack to be considered as macroscopic or ‘long’, its length must
be large compared to the length scale of microstructural features, espe-
cially the grain size. In this case, local changes in the crack resistance
e. g., due to different grain orientations, are averaged out. Furthermore,
the plastic zone must be restricted to the vicinity of the crack tip
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(see sections 5.2 and 5.3). This is not the case in microcracks (also
called ‘short cracks’) because they are completely embedded into the
plastic field [113]. This difference can also be seen in the fact that
macrocracks grow perpendicular to the maximum principal stress (in
mode I), whereas microcracks often do not (see section 10.2.1).

According to equation (5.2), the stress intensity factor KI depends on the
external stress σ and the crack length a. Transferring this to the case of cyclic
loads with a stress range ∆σ, we arrive at the cyclic stress intensity factor

∆K = ∆σ
√

πaY , (10.3)

using the definition ∆K = Kmax − Kmin, where Kmax and Kmin are the
maximum and minimum stress intensity factor in the cycle. The R ratio for
the stress intensity factor is11

R =
Kmin

Kmax
.

The crack propagation is described using the crack-growth rate da/dN ,
defined as the crack growth da per cycle.12

Fatigue-crack-growth threshold

As we saw in section 10.2.2, a threshold stress is required to open the crack
under cyclic loading because compressive stresses occur near the crack tip that
have to be overcome. Accordingly, there is a threshold value of the stress inten-
sity factor below which there will be no crack propagation (see figure 10.13).
If we denote this value of the stress intensity factor as Kop (subscript ‘op’ for
‘opening’), the crack can only grow if Kmax ≥ Kop. The value of Kop depends
not only on the material, but also on the cyclic loading. As it is determined
by the deformation near the crack tip during crack opening and closing, it
depends on the maximum stress and the R ratio.

It is common to describe cyclic loads not using Kmin and Kmax, but rather
with the cyclic stress intensity factor ∆K and the R ratio. The crack propa-
gates if the cyclic stress intensity factor exceeds a certain value, the fatigue-
crack-growth threshold ∆Kth. If we rewrite the criterion for crack propagation,
Kmax = Kop, for the cyclic stress intensity factor, we find the following rela-
tion for the fatigue-crack-growth threshold:

∆Kth = Kop −Kmin = 2(Kop −Km) = (1−R)Kop . (10.4)

11 In principle, the R ratio for K should be denoted RK . However, because RK =
Kmin/Kmax = σmin/σmax = R holds, we can simply write R instead.

12 Because the crack growth is not continuous during the cycle, the crack-growth
rate is defined as da/dN = lim∆N→1 ∆a/∆N [113]. Mathematically, it is thus
not a differential quotient. Nevertheless, it is common to write it in this way.
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sity factor Km

Here, Km is the mean stress intensity factor, analogous to equation (10.1). The
crack starts to grow when ∆K = ∆Kth. According to this equation, ∆Kth

decreases with increasing mean stress intensity factor, leading to crack growth
at decreasing load amplitudes. As illustrated in figure 10.14, this is simply due
to the description of crack growth using ∆K; the criterion Kmax = Kop itself
remains unchanged.

Equation (10.4) seems to imply that ∆Kth depends linearly on the R ratio.
However, it has to be taken into account that Kop itself also depends on R. For
practical applications, it would be useful to know the exact R-dependence, for
this would allow to make measurements at one R ratio only and to extrapolate
from there. Several, sometimes contradictory, approaches can be found in the
literature, for example in Schott [130]:
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∆Kth(R) =

{
(1−R)γ∆Kth|R=0 for R < Rt,
const for R ≥ Rt.

(10.5)

with Rt = 0.5 . . . 0.7. In low- to medium-strength ferritic steels, γ ≈ 1, in
high-strength martensitic steels, γ → 0.

Because the stress intensity factor Kop needed to open the crack depends
on the deformation near the crack tip, it also depends on Young’s modulus,
for the crack opening in a linear-elastic material is the smaller, the higher
Young’s modulus is (see equation (5.3)). Accordingly, Schwalbe [133] provides
the following approximation for the fatigue-crack-growth threshold in metals:

∆Kth(R) = (2.75± 0.75)× 10−5E(1−R)0.31
√

m for R < 1 . (10.6)

Equation (10.6) also shows the dependence of the fatigue-crack-growth thresh-
old on the R ratio, which, however, is not in agreement with equation (10.5)
above.

Although equations like these exist, it should be kept in mind that Kop and
thus ∆Kth depends on many other material parameters e. g., the grain size.
Accordingly, large differences in the exact values can be found even within
a certain material class. Nevertheless, the equations are useful in estimating
the order of magnitude of ∆Kth. If we take steel as an example (with E =
210 000MPa), we find ∆Kth = 5.8 MPa

√
m for R = 0. This is more than one

order of magnitude smaller than the static fracture toughness KIc of ductile
steels and thus illustrates how dangerous even small cracks can be under cyclic
loads.

Crack propagation

If the cyclic stress intensity factor ∆K exceeds the fatigue-crack-growth thresh-
old ∆Kth (i. e., if Kmax > Kop), the crack grows in every cycle. The crack-
growth rate da/dN is determined by those parts of ∆K that exceed Kop

i. e., (for the case Kmin < Kop) by the effective cyclic stress intensity factor
∆Keff = Kmax − Kop. Because Kop is usually unknown, da/dN cannot be
plotted against ∆Keff . Instead, its dependence on ∆K and R is used. As
figure 10.15 illustrates, ∆Keff increases with ∆K and with the mean stress
intensity factor Km i. e., the R ratio.

During crack propagation, the cyclic stress intensity factor ∆K increases
due to the increase of the crack length. Therefore, the crack-growth rate da/dN
also increases even if the cyclic load of the component is constant. If the max-
imum stress intensity factor Kmax approaches the fracture toughness, the
crack accelerates rapidly and eventually becomes unstable after a few more
cycles.13 Final fracture of the component ensues. Similar to the fatigue-crack-
growth threshold, the transition to unstable crack propagation is determined
13 Because of the preceding cyclic crack propagation, the crack may not become

unstable exactly when the stress intensity factor equals KIc (cf., for example,
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by the maximum stress intensity factor Kmax (Kmax = KIc). According to
equation (10.4), the critical stress intensity range ∆KIc can be determined:

∆KIc = 2(KIc −Km) = (1−R)KIc . (10.7)

Again, an increase of Km or the R ratio decreases the allowed cyclic stress
intensity factor ∆KIc.

If we plot the crack-growth rate da/dN versus the cyclic stress intensity
factor ∆K for a constant R ratio in a double-logarithmic plot, we get a crack-
growth curve or da/dN curve (figure 10.16). A marked increase of the crack-
growth rate is apparent in region III where the maximum stress intensity
factor Kmax approaches KIc (∆K → ∆KIc). The crack slows down in region I
when Kmax approaches Kop from above (∆K → ∆Kth). In between, there is
a region marked ‘II’ where the dependence between log(da/dN) and log(∆K)
is almost linear. Accordingly, the crack-growth rate follows the so-called Paris
law

da

dN
= C∆Kn = C∗

(
∆K

KIc

)n

(10.8)

in this region. Here, C is a constant depending on the material and the R ratio.
Similar to the subcritical crack growth of ceramics in equation (7.1), the unit
of the constant C depend on the exponent n, whereas C∗ has the units of a
length. In metals, the exponent n is usually in the region 2 ≤ n ≤ 7 [35], but

section 5.2.5). However, this is irrelevant under cyclic loads because this effect
can only alter the life time of the component by a few cycles. For simplicity, we
will use KIc in the following.
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in brittle materials it can be as large as 50 [120]. For ferritic-pearlitic steels,
Landgraf [87] states the following upper limit for the da/dN curve at R = 0:

da

dN
= 6.9× 10−9 mm

cycle
×

(
∆K

MPa
√

m

)3

.

If we load a crack with a constant stress range ∆σ with ∆K > ∆Kth,
the crack grows. According to equation (10.3), ∆K increases, and the loading
point in the da/dN curve in figure 10.16 moves to the right. The crack-growth
rate increases in each cycle until ∆KIc is reached, and final fracture destroys
the component.

If we consider a specific material and increase the mean stress intensity
factor Km (thus usually also increasing the R ratio, see section 10.1), Kmax

increases as well. The cyclic stress intensity factor ∆K that the component
can bear decreases, shifting the curve to the left, as shown by the dashed
line in figure 10.16. This is a direct consequence of what we discussed above
concerning the mean-stress dependence of ∆Kth, ∆KIc, and da/dN . In equa-
tion (10.8), this shift of the curve is accounted for by the R-dependence of the
factor C. There are a large number of, sometimes contradictory, approaches
to describe the dependence of C on the R ratio and the da/dN curve in all
three regions (see, for example, Broek [23], Radaj [113], and Schott [130]).

Some exemplary da/dN curves are shown in figure 10.17. Only in the case
of the steel was the range of the cyclic stress intensity factor sufficiently large
to capture all three regions of the curve. The slope of the curve is much larger
for ceramics than in the Paris region of metals, resulting in a cyclic stress
intensity factor that is almost the same for negligible and rapid crack growth.
The reason for this is that the strength of ceramics is at most only slightly
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reduced by cyclic loading. The fatigue-crack-growth threshold ∆Kth is almost
the same in ceramics and metals. Nevertheless, metals do have one advantage
if loaded cyclically: Their fatigue strength is larger if they are designed against
a small number of cycles since the Paris region can be exploited in the design.
Because of the extended Paris region, significant crack growth must take place
before the component fails so that regular inspection cycles may detect the
growing crack before failure.

In polymers, the da/dN curves are similar to those of metals. Below a
certain threshold value ∆Kth, there is no crack growth, at larger values, three
regions can be distinguished, with region II being described by a Paris law.
The exponent n takes a value of about 4 in many polymers [97].

In composites, the fatigue behaviour can frequently not be described ade-
quately by da/dN curves because the material usually fails by accumulating
local damage, not by propagation of a single crack. Measuring da/dN curves
is thus a rather involved procedure [29]. If a single crack determines the failure
behaviour, the da/dN curves can be described with a Paris law. Compared to
the matrix material alone, KIc is often reduced in polymer and metal matrix
composites (see section 9.3.4), but ∆Kth is increased. Despite the reduced
fracture toughness, the fatigue life of a composite may thus be larger than
that of the matrix material.

Assessing life times

Using equation (10.3), we can calculate the critical crack length af at which
unstable or accelerated crack growth occurs (transition between regions II and
III in figure 10.16). If we require that this crack length must not be exceeded,
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we can calculate the number of cycles to failure for a given initial crack length
a0 < af .

To do so, we exploit the equality ∆K = ∆KIc or ∆K = ∆Ktr (for
the transition between region II and III), respectively. The number of
cycles until the critical crack length is reached can be estimated for the
initial crack length a0 by [8, 40]:

Nf(a0) =

Z Nf

0

dN =

Z af

a0

1

C

„
1

∆K

«n

da . (10.9)

Here we assume that we are already in region II at the initial crack
length. Inserting ∆K from equation (10.3) and assuming a constant
stress range ∆σ, we find

Nf(a0) =
1

C

„
1

∆σ
√

π

«n Z af

a0

1`
Y
√

a
´n da . (10.10)

If the geometry factor Y is independent of the crack length – an as-
sumption unfortunately not true in most cases –, we can take Y out of
the integral and solve the integral.14 Otherwise, equation (10.10) must
be integrated numerically.

The result is (for n 6= 2 and geometry factor Y independent of the crack
length)

Nf(a0) =
1
C

(
1

∆σ
√

π Y

)n

· 2
2− n

(
a

2−n
2

f − a
2−n

2
0

)
. (10.11)

This equation can be used to estimate the number of cycles to failure for a
known length of the largest crack (see exercise 30).

Growth of short cracks

As explained above, the crack-growth rate da/dN depends on the cyclic stress
intensity factor ∆K = ∆σ

√
πaY and on the R ratio. According to this, a short

crack loaded with a large stress range will propagate with the same rate as a
long crack loaded with a small stress range provided the cyclic stress intensity
factor ∆K is the same. In many cases, this simple picture is correct.

However, the statement of the previous paragraph only holds for macro-
cracks. Microcracks may grow faster than expected from the da/dN curve
(figure 10.16), and they may even grow at a cyclic stress intensity factor below
∆Kth [21,113]. On the one hand, this is due to the fact that the crack growth
resistance of the material varies on the microscopic scale. A microcrack that
is, for example, surrounded by favourably oriented grains may grow rather
14 For the case n = 2, we have to integrate 1/a, leading to ln a. This case is dealt

with in exercise 30.
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Fig. 10.18. Example of an S-N diagram with data points

quickly, whereas another crack is stopped at a grain boundary because neigh-
bouring grains are less favourably oriented. On the other hand, short cracks
may remain open even under compressive loads because they are embedded
in a plastic deformation field [113]. This explains why crack propagation may
take place even below ∆Kth.

If a component contains only microcracks or is not cracked at all, da/dN
curves cannot be used to assess the life time. In this case, other methods are
required that are the subject of the next section.

10.6.2 Stress-cycle diagrams (S-N diagrams)

At the beginning of the chapter, we already saw that the complex load-time
curves occurring in real life are usually replaced by simplified curves in the
laboratory e. g., using sinusoidal loading. Frequently, smooth specimens are
used, similar to the tensile specimens discussed in section 3.2. They are loaded
cyclically with a fixed period, prescribing the stress amplitude σa or the strain
amplitude εa, and also the R ratio (R or Rε, respectively). The advantages
and disadvantages of these two experimental procedures will be discussed at
the end of this section; in the following, we will consider stress-controlled
experiments only.

For each fatigue experiment, the number of cycles to failure15 is measured.
If several fatigue experiments are performed and the number of cycles to
failure Nf is plotted versus the stress amplitude σA or the stress range ∆σ,
the resulting diagram is called a stress-cycle (or S-N) diagram (sometimes also
stress-life or Wöhler diagram, see figure 10.18). We denote the stress values in
the S-N diagram with capitalised subscripts. For example, we denote the stress
amplitude that causes failure after Nf cycles as σA instead of σa. The number
of cycles can also be specified in the subscript, as in σANf , stating, for example,
15 Failure can be defined as fracture of the specimen or occurrence of a crack.
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Fig. 10.19. The characteristic types of S-N curves

σA(1.5×104) = 130 MPa. The number of cycles to failure is always plotted
logarithmically in the S-N diagram; the stress can be plotted logarithmically
or linearly.

Some materials exhibit a true fatigue limit (sometimes also called the
endurance limit). In this case, there exists an limiting number of cycles NE,
with the S-N curve being almost horizontal at a larger number of cycles. In
this case, the S-N diagram is of type I (figure 10.19(a)). A specimen that
has survived NE cycles never fails. The experiment can be stopped and the
specimen can be marked accordingly, usually with an arrow in the diagram
(sometimes denoted as ‘run out’, see figure 10.18). Frequently, NE takes values
between 2 × 106 and 107, depending on the material. The stress level that
corresponds to NE in the S-N curve is called the fatigue strength, endurance
limit, or fatigue limit σE.

In many materials, there is no horizontal part of the S-N curve (type II,
figure 10.19(b)). Although the slope of the S-N curve becomes smaller beyond
a certain number of cycles, failure can still occur. These materials thus have
no true fatigue limit. To ensure safety of the component, a limiting number of
cycles of 108 is often used, ten times larger than the usual value for materials
with a true fatigue limit. To state explicitly that a fatigue strength corresponds
only to a certain number of cycles, not to a true fatigue limit, the number of
cycles can be added to the subscript, as in σE(108).

So far, we have only looked at large numbers of cycles, the so-called high-
cycle fatigue (hcf) regime. As we already saw in the introduction of the
chapter for the example of the car engine (section 10.1), it is sometimes nec-
essary to design against a rather limited number of cycles. If this number is
smaller than about 104, the term low-cycle fatigue (lcf) is used. However,
the number of cycles that characterises the transition from low- to high-cycle
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fatigue is not well-defined [130]. A stress amplitude that causes failure in the
lcf regime is called low-cycle fatigue strength, an amplitude causing failure
in the hcf regime is called high-cycle fatigue strength.

As can be seen from figure 10.18, the slope of the S-N curve is usually
much smaller in the lcf than in the hcf regime so that a small change in the
stress amplitude has a large effect on the number of cycles. This phenomenon
is restricted to metals and polymers and will be discussed for the case of
metals in the next section.

If the maximum stress σmax reaches the strength of the monotonous exper-
iment in the first cycle (the tensile strength Rm for the case of axial loading),
the specimen fractures during this cycle. Often, the number of cycles to failure
is then taken to be Nf = 0.5. The left end of the S-N curve is thus determined
by σA(0.5) = 0.5(1−R)Rm.

Independent of the material tested, the scatter of the cycles to failure is
usually rather large, for even small defects in the material or on the surface
can have a strong effect on the life time. Different specimens thus are never
identical. For this reason, several experiments have to be performed at each
stress level (usually 6 to 10) to allow ascertaining the width of the scatter band.
Using statistical methods, limiting curves can be constructed that represent
a certain probability of failure (for example, 95%). This is elaborated on in
Forrest [50], Radaj [113] or Schott [130].

As the introductory example of a car engine (see section 10.1) shows, real-
life fatigue loads can be stress- or strain-controlled. Stress-controlled loads
occur if the loads are determined by external forces, strain-controlled loads,
for example, if there are temperature changes causing thermal strains. In
many cases, lcf loads are strain-controlled and hcf loads stress-controlled.
This, however, cannot be used as a rule. For example, loads in a rotating disc
are determined by centrifugal forces. Since these are constant during rota-
tion, switching the device on and off corresponds to a single cycle. The load is
thus stress-controlled, but the number of cycles is low (lcf). Usually, stress- or
force-controlled experiments are easier to perform than strain-controlled exper-
iments and are thus often preferred. This is especially true in the hcf regime.

If we look at an S-N curve (figure 10.18), we can see that the number
of cycles to failure strongly depends on the stress in the lcf regime. Small
scatter in the stress-strain properties of different specimens (due to scatter in
the material properties, for example) would cause large changes in the number
of cycles to failure measured in the experiment. The scatter band would thus
be rather wide. In this regime, strain-controlled experiments are more useful
since, with a prescribed strain amplitude, the scatter of the stress amplitude
is small. Furthermore, stress-controlled experiments would also cause more
rapid failure due to the reduction in the cross section of the specimen caused
by crack propagation [113].

To assert the influence of notches and inhomogeneous stress distributions
on fatigue life, experiments can also be performed with notched components
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or specimens, resulting in specific S-N curves. The influence of notches on
fatigue life is discussed in more detail in section 10.7.

S-N curves of metals

In a double-logarithmic plot, the S-N curve of many metals is a straight line
for a wide range of the number of cycles (see figure 10.18). This line can be
described by the Basquin equation [14]

σA = σ′f(2Nf)−a . (10.12)

The fatigue strength coefficient σ′f is related to the tensile strength. In plain
carbon and low-alloy steels, a rule of thumb states σ′f = 1.5Rm; in aluminium
and titanium alloys, σ′f = 1.67Rm holds approximately [113]. The fatigue
strength exponent a depends on the material and the specimen geometry; in
many materials, it takes values between 0.05 and 0.12 if smooth specimens
are used [8, 113].

In plain carbon steels and titanium alloys with body-centred cubic lattice,
there is a true fatigue limit with a horizontal S-N curve at a number of cycles
beyond 2 × 106 to 107 [130] (type I, figure 10.19(a)). This, however, is not
true for notched specimens (and thus also for components) or if corrosion or
oxidation occur during the experiment.

Face-centred cubic metals and hardened steels do not have a true fatigue
limit (S-N curve of type II, figure 10.19(b)). At a number of cycles beyond
107, the slope of the S-N curve is rather small and a limiting number of cycles
of NE = 107 to 108 can be used to design safely against fatigue [130].

Recently, it has been found even in body-centred cubic metals that a
specimen can fail in fatigue even beyond the limiting number of cycles
(107). At a very large number of cycles (more than 1010), the S-N curve
may drop again [93,135]. This is called ultra-high-cycle fatigue (uhcf)
or very-high-cycle fatigue.

In contrast to failure at smaller numbers of cycles, which usu-
ally start from the surface, failure in the uhcf regime is caused by
microcracks being initiated at microscopic inclusions slightly below
the surface of the specimen, visible as so-called fish eyes at the sur-
face [135,139].

S-N curves of metals have a small slope at low numbers (Nf . 103) of cy-
cles as well as in the regime Nf > NE. In this region, the yield strength of
the material is exceeded, and the strain amplitude increases rapidly with the
stress amplitude. A slight increase of the stress causes much larger plastic
deformations and thus strongly reduces the life time.

If we plot the strain amplitude εA(Nf) versus Nf in a double-logarithmic
plot, we get a strain-cycle diagram as shown in figure 10.20. Two linear regimes,
with a smooth transition between them, can be discerned. As we will see soon,
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these linear regimes are related to the elastic and the plastic part of the total
strain. The total strain amplitude can be decomposed as

εA = ε
(el)
A + ε

(pl)
A . (10.13)

Large numbers of cycles (hcf) can only be reached with a small stress
amplitude so that the amount of plastic deformation is small. The total strain
thus corresponds mainly to the elastic part of the strain. The line can be
described using the Basquin equation, re-written with the help of Hooke’s
law:

ε
(el)
A =

σ′f
E

(2Nf)−a . (10.14)

At a small number of cycles (lcf), the stresses are large and the total
strain is mainly determined by plastic deformation. In the lcf regime, a good
approximation for the relation between plastic strain amplitude and cyclic life
is given by the Coffin-Manson equation [32, 94,95].

ε
(pl)
A = ε′f · (2Nf)−b . (10.15)

For the fatigue ductility coefficient ε′f , the true fracture strain in tensile loading
can be used as a good approximation. The fatigue ductility exponent b depends
on the hardening of the material. Typical values for b are in the range of 0.4
to 0.73 [113,130].

Adding both parts of the strain (equation (10.13)) yields

εA =
σ′f
E

(2Nf)−a + ε′f · (2Nf)−b , (10.16)
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the strain-cycle diagram shown in figure 10.20. This equation frequently is
called Coffin-Manson-Basquin equation.

As we saw in section 10.2.1, the crack initiation – and thus the fatigue
strength – of smooth specimens of ductile materials is determined by accu-
mulated plastic deformation which usually occurs at the surface. For this
reason, the fatigue limit σE for fully reversed loading, R = −1, is related
to the strength under static loads. The most suitable parameter to quantify
this relation is not the yield strength Rp, as might be expected, but the
tensile strength Rm or a combination of both, as already used in the failure-
assessment diagram in section 5.2.3 [113].

In low-strength materials, the fatigue limit is usually proportional to
the static strength. In high-strength metals, the fatigue limit increases only
slightly within a material class (figure 10.21). The reason for this is that
high-strength materials are very notch-sensitive, and the fatigue limit is thus
determined by surface or inner defects. A large number of approximation for-
mulae for the fatigue strength can be found in the literature [90,113,130,147];
some of them are listed in table 10.2, taken from Radaj [113].

S-N diagrams of ceramics

As already explained in section 10.3, many ceramics do not exhibit any cyclic
effects and can thus bear infinitely many cycles of any load that is smaller
than the static strength (e. g., under tension or bending). In these ceramics,
the S-N curve is simply a horizontal line at σMax = Rm or σA = 0.5(1−R)Rm

(for the example of a uniaxial load). For a fully reversed stress, this results in

σE|R=−1 ≈ Rm . (10.17)
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Table 10.2. Approximate fatigue limit of some metals

material class fatigue limit σE for R = −1

steels = (0.35 . . . 0.65)×Rm for Rm < 1 400MPa
≈ 700MPa for Rm ≥ 1 400MPa

cast irons = (0.3 . . . 0.4)×Rm for Rm < 500MPa

aluminium alloys = (0.3 . . . 0.5)×Rm for Rm < 325MPa
≈ 130MPa for Rm ≥ 325MPa

titanium alloys = (0.45 . . . 0.65)×Rm for Rm < 1 100MPa
≈ 620MPa for Rm ≥ 1 100MPa
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This can be exploited to test components with the proof test (section 7.4). If
the component does not fail during the test, it can be assumed that it will
not fail by fatigue in service.

If mechanical fatigue occurs in a ceramic, equation (10.17) does not hold
anymore, and an S-N curve is useful. Figure 10.22 shows such a curve for
silicon nitride at three different temperatures. As it is usual for ceramics,
the slope of the S-N curve is small. Slightly reducing the stress thus can
significantly increase the life time. The fatigue limit is only slightly below the
static strength. Fatigue occurs in this ceramic because the crack propagates
on the glassy phase of the grain boundaries (see section 7.5.2), resulting in
crack bridging effects as explained in section 10.3. However, the effect is rather
small.

The number of cycles to failure is almost identical for 20℃ and 1000℃
so that the same fit curve can be used to describe both. Raising the tempera-
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Fig. 10.23. S-N diagram of polyoxymethylene (polyacetal) at different loading
frequencies (after [102]). The solid line corresponds to mechanical fatigue; at higher
frequencies (dashed lines), the material fails by thermal fatigue. If the load is reduced,
the thermal fatigue curves join with the curve for mechanical fatigue

ture to 1200℃ has a marked influence on the fatigue strength of the ceramic
because creep (see chapter 11) occurs in this case. This small temperature
dependence over a wide temperature range is also typical of ceramics.

S-N curves of polymers

We already saw in section 10.4 that the fatigue behaviour of polymers strongly
depends on the load frequency because of their viscoelastic properties. If the
frequency is sufficiently large, the polymer can fail by thermal fatigue due to
the heat generated during deformation. This is shown for the example of a
thermoplastic polymer in figure 10.23. At low frequencies, the thermoplastic
fails by crack formation and propagation, similar to a metal, at higher frequen-
cies, thermal fatigue occurs (section 10.4.1), and the fatigue strength strongly
decreases. The load frequency is for this reason usually limited to 10 Hz.

S-N curves of different polymers are depicted in figure 10.24. In many
polymers (e. g., pvc, pp, pa), the S-N curve is horizontal at a large number
of cycles, corresponding to a curve of type I (see figure 10.19(a)). However, as
figure 10.23 shows, this may be due to thermal fatigue, and in this case the
horizontal part of the curve meets the curve for true mechanical fatigue at
higher numbers of cycles.

S-N curves of polymers have to be used with caution in designing compo-
nents. The fatigue strength depends much more strongly on the load frequency
than in metals because the equilibrium between heat production and dissipa-
tion plays a crucial role. To design components, experiments should be as
close to real service conditions as possible.
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Fig. 10.25. Comparison of the S-N curves of unreinforced as well as glass- and
carbon-reinforced polysulfone (simplified plot after [29])

S-N curves of fibre composites

According to section 10.5, the fatigue strength of fibre composites is usually
higher than that of the matrix material alone. This is shown in figure 10.25,
using the S-N curves of unreinforced and short-fibre reinforced polysulfone.
The increased fatigue strength is apparent from the figure. Long carbon fibres
are especially efficient in increasing the fatigue strength of polymer matrix
composites, not only because of their high stiffness, but also because of their
thermal conductivity. The picture is similar in metal matrix composites. For
example, adding 20% silicon carbide fibres to an aluminium matrix doubles
the fatigue strength [140].
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Because fibre composites usually do not fail by formation and growth of
a single crack, but by accumulating damage, their stiffness decreases with
increasing number of cycles. This is similar in unreinforced materials since the
growing crack reduces their stiffness as well. However, a significant reduction
in stiffness is usually observed only shortly before ultimate failure, whereas a
damaged composite may have a long life time despite its reduced stiffness.

10.6.3 The role of mean stress

In the S-N diagram (see the previous section), we plot all values at constant
R ratio. To quantify the influence of the mean stress or the R ratio for the
whole range of numbers of cycles, from the lcf regime to the fatigue limit,
an extensive number of experiments are required. If this is done, the result
is as should be expected: The curves shift to smaller stress amplitudes with
increasing mean stress. In many cases, only the dependence of the fatigue
limit is of interest. In this case, the fatigue strength diagrams after Smith and
Haigh can be used.

Smith’s fatigue strength diagram

To draw a Smith’s fatigue strength diagram, the stress amplitude at the fa-
tigue limit σE is measured for different values of the mean stress σm.16 The
maximum and minimum stress, σMax and σMin, are plotted in a diagram as
shown in figure 10.26. As can be seen from the figure, the stress amplitude σE

decreases with increasing mean stress as expected. Because plastic flow of
the material is not allowed, the diagram is limited horizontally by the yield
strength Rp or Re in the tensile, and by the compressive strength Rc (in
ductile metals, this is usually equal to Rp) in the compressive region.

Haigh’s fatigue strength diagram

A Haigh’s fatigue strength diagram, or Haigh’s diagram for short, corresponds
to a Smith’s fatigue strength diagram in which the stress amplitude σE is
plotted versus the mean stress, instead of the maximum and minimum stress.
The distance of a data point from the abscissa in Haigh’s diagram thus cor-
responds to the vertical distance of the point from the diagonal in Smith’s
diagram. Because the stress amplitude is the same above and below the mean
stress, only the upper part of the curve is drawn (figure 10.27(a)). To plot the
R ratio R = σmin/σmax = (σm − σa)/(σm + σa) in the figure, this equation is
rewritten as
16 Lowercase subscripts are used for the prescribed quantities, e. g., the mean stress

σm, while uppercase subscripts are used for the resulting quantities for endurance,
e. g., the stress amplitude σE. Or, in other words, for a given mean stress σm, we
search the fatigue limit σE.
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Fig. 10.26. Stress-time diagram and Smith’s fatigue strength diagram. As shown,
the points in the fatigue strength diagram can be taken directly from the different
stress-time diagrams. In metals, the compressive yield strength Rc is usually the
same as Rp

σa =
1−R

1 + R
σm . (10.18)

According to this, the relation between σa and σm corresponds to a straight
line through the origin, with a slope that depends on the R ratio, as drawn
in figure 10.27(a).

The limits at +Rp and −Rc are not as easy to draw in Haigh’s diagram
as in Smith’s. The relation σMax = σm + σE = Rp yields σE = Rp − σm; from
σMin = σm−Rc we get σE = Rc +σm. Both limits thus correspond to straight
lines with a slope of ±45°, intersecting the axis at Rp and Rc, respectively.
These are shown in figure 10.27(a).

Different approximations can be used to describe the fatigue strength dia-
gram between these limits [130]. Frequently, a linear Goodman equation is
used, corresponding to a straight line that connects the fatigue strength σE

at R = −1 and the tensile strength Rm at R = 1 (figure 10.27(b)). This ap-
proximation is valid for positive mean stresses (−1 ≤ R ≤ 1). Mathematically,
it can be described by the equation [8, 76]

σE(σm) =
(

1− σm

Rm

)
σE|R=−1 . (10.19)

Furthermore, the condition σMax ≤ Rp must hold to avoid yielding. The curve
constructed in this way serves as a reasonable and conservative approximation
for ductile materials in its range of validity.
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Fig. 10.27. Haigh’s fatigue strength diagram

∗ 10.6.4 Fatigue assessment with variable amplitude loading

The S-N diagram plots the life time of a material at constant stress amplitude
and R ratio. It is, however, not possible to assert the life time, using the
diagram, if the load amplitude changes. The most obvious way to determine
the life time in this case is to simulate the service load history in the laboratory.
Unfortunately, this is a rather involved procedure that is not feasible in most
cases. It would be helpful if it were possible to estimate the life time directly
from the S-N curves. One way to do this is to use Miner’s rule (also known
as Palmgren-Miner rule) [99] that will be explained now. The rule is rather
simple and thus easy to employ, but it has some disadvantages, discussed at
the end of this section.

To use Miner’s rule, a partial damage of the component is calculated for
each loading step. Assume that the component is loaded with k different stress
amplitudes σa,j , j = 1, . . . , k and that the number of cycles for amplitude j is
nj . We can then use the S-N curve to determine the number of cycles to failure
for each of the stress amplitudes, Nf,j(σa,j). Miner’s rule now assumes that
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each step ‘uses up’ part of the components life time, with a partial damage
Dj = nj/Nf,j . The component fails when the total damage D equals one:

D =
k∑

j=1

nj

Nf,j
= 1 . (10.20)

The sequence of the load steps is not taken into account in equation (10.20).
It is easy to see that this is not valid in some cases. Assume that we use two
stress amplitudes, σa,1, being smaller than the fatigue limit σE, and σa,2, being
larger. If we start with a sufficient number of cycles at the higher load σa,2,
microcracks will form according to section 10.2.1. Afterwards, the smaller
stress amplitude σa,1 is sufficient to further propagate the crack. Miner’s rule,
however, associates no damage with the smaller load because the number of
cycles the component would live at this load alone is Nf,1 = ∞, corresponding
to D1 = 0. Thus, a calculational damage of D = 1 does never occur, and the
specimen fails although D stays smaller than 1.

If we load another specimen with the reversed sequence, no damage will
be caused by the first stress amplitude σa,1, and we find D1 = 0 for any n1.
All damage in the material is accumulated during the second loading step, at
stress amplitude σa,2, causing failure at n2 = Nf,2 when D = D2 = 1 holds.
As the example shows, the sequence of loading may influence the fatigue life
strongly, an effect neglected in Miner’s rule.

Sometimes, cyclic hardening occurs during the first loading step (see
section 10.6.5 below). The specimen will then yield less in the next
loading steps. This so-called coaxing is especially important if the stress
amplitude is increased in many loading steps. If a training effect occurs,
the specimen may fail at damage values D > 1.

To summarise, it can be stated that Miner’s rule is useful to provide a first
approximation of the life time, but it has to be used with great care, for the
calculated life time may not be a conservative estimate.

∗ 10.6.5 Cyclic stress-strain behaviour

We already mentioned in section 10.2.1 that the stress-strain behaviour of met-
als may change during cyclic loading. Depending on the initial state, different
effects may occur.

∗ Cyclic hardening and softening

If we perform, for example, a fatigue experiment at constant strain ampli-
tude εa, the stress amplitude σa changes during the experiment. Figure 10.28
shows typical cases. If the stress increases during loading, cyclic hardening oc-
curs (figure 10.28(a)); if the stress decreases, the phenomenon is called cyclic
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Fig. 10.28. Cyclic stress-strain behaviour at the beginning of strain-controlled fa-
tigue experiments (after [130]). The controlled variable is shown on the left, the
material answer in the centre

"

cyclic
monotonous

¾

Fig. 10.29. Cyclic stress-strain diagram.
A static stress-strain curve is shown for
comparison

softening. Frequently, the stress amplitude changes only initially and then
stabilises to a constant value.

If we perform cyclic experiments at different strain amplitudes and plot
the stabilised values of the stress amplitude, we arrive at the cyclic stress-
strain diagram sketched in figure 10.29. Usually, it does not coincide with the
result of a monotonous tensile or compressive test. If cyclic hardening occurs,
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t

Fig. 10.30. Time-dependence of the strain to determine the cyclic stress-strain
curve in an incremental-step test

the curve lies at higher stress values; if there is cyclic softening, the curve lies
below the monotonous one.

The cyclic stress-strain curve is frequently approximated by the Ram-
berg-Osgood law, equation (3.15), using modified parameters K′ and n′:

εa =
σa

E
+

“ σa

K′

”1/n′

.

Cyclic hardening and softening are caused by dislocation movement under
cyclic loads. New dislocations form, existing dislocations rearrange to reduce
the stored energy, and dislocations may also annihilate. If the dislocation
density is initially small, multiplication of dislocations usually causes cyclic
hardening. If the dislocation density is large, for example because of work
hardening of the material prior to cyclic loading, the material may soften by
dislocation rearrangement and annihilation.

The microstructure of the material may also change under cyclic loads. In
precipitation-hardened alloys with underaged precipitates (see sections 6.3.1
and 6.4.4), the precipitates may be destroyed by repeated cutting, reducing
the strength of the material. In ferritic steels, the dislocations may detach from
their surrounding carbon atoms so that no apparent yield strength exists in
the cyclic stress-strain diagram, and the cyclic curve lies below the static one
in this strain range (see section 6.4.3). Cyclic softening results.

To reduce the experimental efforts in measuring cyclic stress-strain
curves, the incremental-step test can be used. In this test, the strain
amplitude is varied block-wise between zero and a maximal value as
sketched in figure 10.30. After the block has been repeated several times,
the material behaviour does not change anymore and a stationary state
is arrived at. If the stress is measured at each of the strain maxima, the
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Fig. 10.31. Cyclic stress-strain behaviour at the beginning of fatigue experiments
with non-zero mean strain or stress, respectively (after [130]). The controlled variable
is shown on the left, the material answer in the centre

cyclic stress-strain curve can be obtained. In this way, the whole curve
can be measured using only one specimen.

The cyclic stress-strain curve can be used, for example, to perform
finite element simulations of cyclic loadings. To simulate the complete
experiment in the computer, it would be necessary to obtain informa-
tion on the hardening of the material (isotropic and kinematic hard-
ening) and to determine a material model that correctly describes it.
This would be an extremely complicated procedure. Furthermore, the
entire number of cycles would have to be calculated, which would re-
quire an immense amount of computing time. Instead, the flow curve,
taken by the finite element software to be monotonous, can be replaced
by the cyclic stress-strain curve. A single, monotonous loading of the
component is then simulated. Stresses and strains calculated in this
way correspond well with those in the cyclically loaded component.

∗ Cyclic relaxation and ratchetting

If a strain-controlled fatigue experiment is performed at a non-zero mean
strain, cyclic relaxation may occur in addition to cyclic hardening or softening,
with the mean stress decreasing over time (figure 10.31(a)). If, on the other
hand, the experiment is stress-controlled at a non-zero mean stress, the hys-
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teresis loop frequently shifts along the strain axis as shown in figure 10.31(b).
This phenomenon is called ratchetting.

Again, dislocation movement is responsible for this. In a simple model,
we can imagine (for the case σm > 0) that there are obstacles to dislocation
movement in the material (for example, precipitates) which are strong enough
that they cannot be overcome by the maximum shear stress occurring at σmax.
Under cyclic loading, the dislocations move backwards and forwards between
the obstacles. Since the deformation starts elastically upon load reversal before
dislocation movement is activated, there is a hysteresis in the stress-strain
diagram (see also figures 3.30(b) and 10.7). Occasionally, thermal activation
(see section 6.3.2) or other external processes may enable a dislocation to
overcome one of the obstacles. Another mechanism to overcome obstacles
is provided by dislocation pile-up which locally increases the stress. Thus,
a dislocation may occasionally surmount one of the obstacles and cause an
additional plastic strain. Because the absolute value of σmax is larger than
that of σmin, the shear stress and thus the force on the dislocations is larger
at σmax, resulting in a higher probability of overcoming the obstacle. This
causes the shift of the hysteresis loop shown in figure 10.31(b). The argument
is the same if σm < 0, but in this case, the maximum shear stress occurs
at σmin. Altogether, plastic strain increases slightly in each cycle, causing
ratchetting.

∗ 10.6.6 Kitagawa diagram

In sections 10.6.1 and 10.6.2, we discussed two different ways to design
with cyclically loaded materials. Using fracture mechanics, we found in sec-
tion 10.6.1 that a crack cannot propagate further if the cyclic stress intensity
factor ∆K is smaller than a limiting value ∆Kth which depends on the ma-
terial and the load. This argument, however, was only valid if the methods
of linear-elastic fracture mechanics can be applied. This is the case for macro-
cracks, cracks with a length larger than the typical length scale of microstruc-
tural features (e. g., grains) in the material. Furthermore, the plastic zone
near the crack tip has to be small compared to the size of the crack (see also
sections 5.2 and 5.3). As already stated in section 10.2.1, this explains why
smooth specimens may fail by formation and growth of microcracks, although
the threshold value ∆Kth is not exceeded initially.

This fact can be visualised using the so-called Kitagawa diagram. In this
diagram, the stress range ∆σ = σmax−σmin is plotted versus the crack length
a on a double-logarithmic scale (figure 10.32), and a line is drawn to sepa-
rate the regions of finite and infinite life times. If the crack length exceeds a
critical value a∗, the fatigue strength is determined by linear-elastic fracture
mechanics:

∆σth =
∆Kth√
πaY

. (10.21)
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Fig. 10.32. Kitagawa diagram to determine the influence of defects on the fatigue
limit. The stress range ∆σ = 2σA is plotted versus the crack length a using a
double-logarithmic scale. Y = 1 = const was assumed

If the geometry factor Y does not depend on the crack length, a straight
line with slope −0.5 results in the double-logarithmic plot. This line, however,
cannot be extended to arbitrarily small crack lengths, for it is limited by
the fatigue limit ∆σE = 2σE measured on smooth specimens. As already
stated, this limit is due to the fact that the stress level is sufficient to initiate
microcracks that can propagate through the specimen. When these cracks
have become large enough to be treated as macrocracks, the stress intensity
factor ∆K is larger than ∆Kth, and the crack will not stop, causing failure
after a finite number of cycles.

The critical crack length a∗ is determined by

a∗ =
1
π

(
∆Kth

∆σEY

)2

. (10.22)

In metals, it is usually a few hundredth to tenth of a millimetre [113]. If
a < a∗, linear-elastic fracture mechanics is not valid anymore, rendering the
stress intensity factor useless. As shown in figure 10.32, the maximum allowed
stress range does not depend on the crack length in this case.

If the geometry factor depends on the crack length, the right part of the
curve in the Kitagawa diagram deviates from a straight line. Because the
critical crack length a∗ is usually small, this length dependence is only of
minor importance at a∗.

The transition from the fatigue limit measured on smooth specimens to the
fracture-mechanically controlled part of the curve is not as abrupt in reality
as sketched in the idealised curve of figure 10.32, but is smoothed. This is
shown in figure 10.33. The figure also illustrates that even small defects with
a size below the already small value a∗ can significantly reduce the fatigue
strength. In the diagram, for example, the stress range for infinite life ∆σ
reduces to 82% of the fatigue limit ∆σE even at a/a∗ = 0.5. This again serves
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Fig. 10.33. More precise approximation of a Kitagawa diagram (after [113])

to illustrate how strongly the fatigue strength of a material depends on the
material quality (surface roughness, porosity, etc.), compared to the static
case.

∗ 10.7 Fatigue of notched specimens

As explained in chapter 4, notches cause a stress concentration in a component.
Thus, it should be expected that notches also affect the fatigue strength of a
component. The stress concentration at the notch root is again described by
the stress concentration factor Kt according to equation (4.1):

σa,max = Ktσa,nss .

If we assume that the maximum stress amplitude in the component must not
exceed the fatigue limit of a smooth specimen, σE, we should expect that the
maximum nominal stress amplitude for a notched specimen is

σE,nss,expected =
σE

Kt
, (10.23)

where the stress amplitude σE,nss is calculated at the notched cross section.
Experimentally, it is found that a notched specimen can bear larger loads in
fatigue than predicted by equation (10.23). Thus, we define the fatigue notch
factor (or fatigue strength reduction factor) Kf as quotient of the fatigue limit
of a smooth specimen σE and that of the notched specimen σE,nss

Kf =
σE

σE,nss
. (10.24)
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Fig. 10.34. Illustration of the notch support effect using a Kitagawa diagram. Sub-
figure (a) shows two geometries with stress concentration factor Kt = 3. The stress
fields of the geometries differ in the gradient at the notch root. If a crack starts there,
it is in the upper (finite life time) part of the Kitagawa diagram (subfigure (b)). If
the gradient is large, the crack is unloaded and stops; if the gradient is small, the
crack continues to grow. In the figure, Y = const was assumed

The fatigue notch factor Kf is limited by 1 ≤ Kf ≤ Kt. The difference between
Kf and Kt depends on the material, the notch geometry, and the load case.
Since the fatigue limit of the notched specimen is larger than expected from
the maximal stress at the notch root, it is frequently said that the notch has
a supporting effect. This is a rather misleading term because the fatigue limit
of the notched specimen is never larger than that of the un-notched one at
the same net-section stress.

To explain the unexpectedly high fatigue limit of a notched specimen, the
crack propagation in stage I is crucial in a ductile material. As we saw in
section 10.6.6, it is not the stress intensity factor which is important at this
stage, but the stress at the position of the crack. Since fatigue cracks usually
start at the surface of the specimen at the notch root, a growing crack enters a
region with smaller stress and can thus be partially unloaded.17 Figure 10.34
shows the Kitagawa diagram for this case. With increasing crack length, the
stress at the crack tip reduces and the crack may enter the part of the diagram
where the life time is infinite and the crack may thus stop.

Whether a growing crack can be stopped in this way depends on how
rapidly the stress decreases at the notch root. To quantify this decrease, we
define the relative stress gradient at the notch root
17 As we will see below, this is not true anymore as soon as linear elastic fracture

mechanics can be applied. In this case, the increase of the stress intensity factor
due to the growing crack is larger than the decrease of the stress in the notch
root, see figure 10.38.
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Table 10.3. Relative stress gradient of some geometries [76]
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where x and X are defined in figure 10.35, and where the maximum stress
amplitude at the notch root is σa,max. The unit of the relative stress gradient is
mm−1. The relative stress gradient corresponds to the inverse of the distance
between the notch root and the intersection of the tangent at σa(x)|x=X with
the coordinate axis as in figures 10.34 and 10.35. It only depends on the
geometry and can be found in approximation equations or tables [43,76]. Some
example values are given in table 10.3.

Here we want to stress the difference between the relative stress gradient
χ∗ and the stress concentration factor Kt which both depend on geometry only.
The stress concentration factor quantifies the concentration of the stress at



www.manaraa.com

378 10 Fatigue

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

nÂ

Â¤/mm–1

1086420

Rm = 15
0

30
0
30

0
60

0
20

0

400

150

400

900

ca
st
 s
te
el

ca
st
 i
ro
n

austenites

low-strength steels

tempering steels

spring steels

Fig. 10.36. Dependence of the notch support factor on the relative stress gradient
for several iron-base materials (after [147])

the notch root. The relative stress gradient quantifies how quickly the stress
decreases from this maximum value. As shown in figure 10.34, the relative
gradient can be different even if the stress concentration factor is the same.
The size of the component is especially important: If we scale the geometry
isometrically, the stress concentration factor remains unchanged, whereas the
relative stress gradient changes because it has the units of an inverse length.
Even at the same stress concentration factor, the larger component is thus
more notch-sensitive than the smaller.

If the relative stress gradient is small, the stress decreases only slowly with
increasing distance from the notch root. To have the crack enter the region of
the Kitagawa diagram where the life time is infinite, the maximum stress at
the notch root must be smaller. Therefore, the fatigue limit σE,nss decreases
with decreasing relative stress gradient. This is also confirmed by figure 10.36:
In this figure, the notch support factor

nχ =
Kt

Kf
=

σE,nss

σE/Kt
=

KtσE,nss

σE
(10.26)

is plotted versus the relative stress gradient. The notch support factor nχ

does not compare the strength for static and cycling loading, but the observed
fatigue limit σE,nss with the expected fatigue limit if the fatigue behaviour were
determined by the elastic stress concentration at the notch root (σE/Kt). It is
not a material parameter, but depends also on the geometry via the quantity
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χ∗. The following inequality holds: 1 ≤ nχ ≤ Kt. At nχ = 1, the notch exerts
its full influence and the fatigue limit decreases as predicted by the stress
concentration factor. This is the case in large components and for comparable
values of Kt i. e., when χ∗ is small. If nχ = Kt, Kf = 1 or, equivalently,
σE,nss = σE holds. In this case, the component is not weakened by the presence
of the notch. If an nχ value larger than Kt results from the diagram 10.36,
the notch has no influence and nχ is actually equal to Kt.

The fact that a stress gradient at the surface increases the strength
of a component can also be seen in bending. In bending, the stress
decreases linearly with the distance from the surface. The gradient
increases with decreasing component size. For this reason, components
can bear higher loads at the surface if loaded in bending than in tension,
and thin components have a higher fatigue limit than thick ones [76].

Figure 10.36 also shows a correlation between nχ and the material strength. If
we consider a material class, the notch support factor usually decreases with
increasing tensile strength Rm. The notch support factor of a ferritic spring
steel, for example, is smaller than that of a low-strength steel (see figure 10.36).
This can be explained as follows: Materials with lower strength (and higher
ductility) have a smaller fatigue limit σE but a comparable threshold value
∆Kth for crack propagation. According to equation (10.22), the critical crack
length a∗ is larger, making it possible for cracks starting at a notch root with
a smaller relative stress gradient to enter the region of the Kitagawa diagram
where the material survives. The cracks can thus be stopped. This may not
be possible in the high-strength material because of the smaller critical crack
length a∗, and the notch support factor becomes smaller. Figure 10.37 illus-
trates this by surveying the yield strength Rp (static test) and the fatigue
limit (under fully reversed stress) of un-notched (σE) and notched specimens
(σE,nss). The fatigue limit of a notched specimen depends not only on the
material, but also on the notch geometry. In the example, it remains almost
constant with increasing yield strength, but it may even decrease for some ge-
ometries. Since high-strength materials usually have to serve at higher loads,
the notch sensitivity increases even if the fatigue limit of the notched specimen
remains constant.

It may seem surprising that the notch support factor of brittle materials,
like cast iron, is rather large (see figure 10.36). This is due to the fact that
cracks in cast iron start at the graphite particles which act as inner defects
and are statistically distributed. It is rather improbable that the crack that
determines failure behaviour (the largest crack) is situated exactly at the notch
root where the stress concentration becomes important. This is analogous to
the dependence of the failure probability on the material volume according to
the Weibull statistics (see section 7.3). This notch support in brittle materials
also occurs under static loads.



www.manaraa.com

380 10 Fatigue

0

100

200

300

400

500

600

0 100 200 300 400 500

R0.2/MPa

σ

MPa
1
4
A

l
9
9
.5

a
n
n
e
a
le

d

A
lM

g
M

n
a
n
n
e
a
le

d
/
A

lM
g
3
a
n
n
e
a
le

d

A
lM

g
4
.5

M
n

a
n
n
e
a
le

d

A
lM

g
S
i
0
.5

F
2
2

A
lM

g
S
i
0
.8

F
2
8

A
lM

g
S
i
1

F
3
2

A
lZ

n
M

g
1

F
3
6

A
lC

u
M

g
2

F
4
4

A
lZ

n
M

g
C

u
0
.5

F
5
0

A
lZ

n
M

g
C

u
1
.5

F
5
4

Rm

R0.2

σE

σnss,E

Fig. 10.37. Plot of the fatigue limit (R = −1) versus the yield strength of some
aluminium alloys (after [5])

∗ Notches in pre-cracked components

So far, in considering the effect of notches, we have assumed that the notch
root contains no initial crack and that the component is designed against
its fatigue limit. Therefore, we compared the fatigue properties with those
measured for smooth, crack-free specimens. At finite life, cracks may form
at the notch root and enter stage II of crack propagation. They can then be
described using the stress intensity factor. In this case, the remaining life time
is of interest, which cannot be calculated using the considerations made so far.
To assess the life time, we consider the two limiting cases of the crack length a
being small and large.

If the crack length is small, the crack ‘feels’ the stress concentration at the
notch root almost completely. We can thus imagine the crack to be situated
in an un-notched component loaded at the stress in the notch root, Kt∆σnss,
ignoring the small decrease of the stress when moving away from the notch
root to achieve a conservative design. In other words, the stress intensity factor
for a notched specimen with stress concentration factor Kt and external load
∆σnss is

∆K = Kt∆σnss

√
πa · Yshort . (10.27)

Yshort is the geometry factor for a surface crack in a semi-infinite geometry
(e. g., Y = 1.1215 for a crack in a plane geometry, see table 5.1). It is used
here because the crack starts at the notch surface and is small compared to
the component’s dimensions.
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If the crack is large, it has moved so far away from the notch stress field
that it ‘feels’ only the far-field stress ∆σ.18 The notch is now in the region
unloaded by the crack, and the fact that the notch opening is much wider
than that of the crack is irrelevant for the mechanical behaviour. Thus we
have to add the notch depth to the crack length, resulting in

∆K = ∆σ
√

π(a + t) Ylong . (10.28)

We already exploited this fact when we considered ct specimens in sec-
tion 5.2.7 where we also measured the crack length starting at the loading
point, not at the beginning of the crack (see figure 5.14(b)).

It is also possible to estimate the cyclic stress intensity factor for in-
termediate values of the crack length. This is explained in detail in
Radaj [113] and Dankert [37]. Figure 10.38 shows the approximations
for short and long cracks and an improved approximation for arbitrary
crack length for an example, following Dankert. For short cracks of
length up to ashort = 0.5mm, equation (10.27) provides a good ap-
proximation. For cracks larger than about along = 3 mm, the more
precise approximation exceeds the simple approximation formula for
long cracks and approaches it gradually. This is due to the fact that

18 The stresses ∆σnss from equation (10.27) and ∆σ from equation (10.28) differ
because we use the cross section at the notch in the first and the total cross
section in the second case.
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the specimen becomes more compliant due to the hole in the middle
of the crack, similar to a specimen with a surface crack being more
compliant than one with an inner crack (see section 5.2.2). For very
long cracks, the influence of the hole on the crack is negligible.

As figure 10.38 shows, the stress intensity factor always increases
with increasing crack length, the stress gradient in the notch root
notwithstanding. A crack in stage II, loaded in mode I, cannot be
stopped by the decrease of the stress at the notch root. This can only
happen for short cracks in stage I that cannot be described using frac-
ture mechanics.

Using equations (10.27) and (10.28), the cyclic stress intensity factor can be
estimated and it can be checked, according to section 10.6.1, whether the crack
propagates (∆K ≥ ∆Kth) or how large the crack-growth rate da/dN is.
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Creep

Creep is the time-dependent, plastic deformation of a material.1 According to
the definition from section 2.1, creep processes are viscoplastic processes. The
time-dependent plastic deformation of polymers has already been covered in
chapter 8. Here we discuss creep of metals and ceramics.

11.1 Phenomenology of creep

If a metallic or ceramic component is stressed at elevated temperature i. e.,
at a homologous temperature T/Tm (Tm: absolute melting temperature) of at
least 0.3 to 0.4, the strain of the component increases with time at constant
load. A typical, schematic plot of the strain is shown in figure 11.1 which also
shows the strain rate ε̇ versus the time and the strain. Initially, the component
reacts with a time-independent strain ε0 which consists of an elastic and
a plastic part. The strain increases further with time, with the strain rate
changing strongly, usually decreasing continuously. This region (region I) of
the creep curve is called primary creep or transient creep. Following this is a
region (region II) of steady-state creep or secondary creep with approximately
constant strain rate.

This shape of the creep curve occurs only in materials that do not change
their microstructure during the creep process. This is the case in simple alloys,
but not in many technical alloys (see section 11.2.1 for more about this). A
constant strain rate is also only observed if the stress in the component is kept
constant. Since the cross section of the component decreases under tensile load
during the deformation, the force on the component has to be reduced over
time. In service, this is usually not the case so that no region of constant strain
1 In the context of polymers, the time-dependent elastic deformation (retardation

and relaxation, see section 8.2.1) is frequently denoted as creep as well. To avoid
confusion, this is not done in this book, excepting the standard term ‘creep mod-
ulus’.
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Fig. 11.1. Stages of creep at constant stress

rate is observed. In these cases, the minimum creep rate is used instead of the
constant creep rate during secondary creep to quantify the creep behaviour.

After most of the life time has passed, the creep rate strongly increases
until final fracture ensues. In this region of tertiary creep (region III), massive
inner damage occurs in the material as we will discuss in detail in section 11.3.
This strongly reduces the load-bearing cross section and thus explains the
strong increase of ε̇.

The primary part and the secondary part of the creep curve are frequently
described using empirical laws e. g., the Garofalo equation [40]:

ε = ε0 + εt

(
1− e−rt

)
+ ε̇IIt . (11.1)

In this equation, εt describes the additional strain during transient creep, 1/r
quantifies the transition time between regions I and II, and ε̇II is the constant
creep rate during secondary creep. Figure 11.2 illustrates how the total strain
is decomposed into these parts.

Experimentally, it is frequently observed that, during secondary creep, the
strain rate ε̇II depends with a power law on the stress σ and exponentially on
the temperature T :

ε̇II = Bσn exp
(
− Q

RT

)
, (11.2)
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Fig. 11.2. Decomposing the total strain into its terms according to equation (11.1)
(after [40])

where B is a constant2, n is the creep exponent, and Q is an activation energy
characterising the creep process. This creep law is called power-law creep or
Norton creep. According to this law, creep is a thermally activated process.
In crystalline materials, it is found that the activation energy Q is roughly
equal to the activation energy for self-diffusion3 of the material. This sug-
gests that diffusion is important in creep and also explains why the onset of
creep depends on the homologous temperature T/Tm: High-melting materials
have a large value of the binding energy and thus need a large amount of
energy to create and move vacancies. The activation energy for self-diffusion
is thus large, and the exponential term in equation (11.2) can reach the size
of that in a low-melting material only at higher temperatures. As shown in
table 11.1, a rule-of-thumb is that the maximum service temperature of me-
chanically highly stressed metals and ceramics is approximately T/Tm = 0.5.4
An important exception to the rule are nickel-base superalloys. Although their
melting temperature is lower than that of steels, their maximum service tem-
perature is much higher. This class of materials is thus of special importance
in high-temperature applications. Modern aero engines, for example, would
be unthinkable without them. The reasons for this exceptional behaviour are
discussed in section 11.4.

The creep resistance of materials can be visualised using creep diagrams
that plot the stress until fracture or until a certain plastic deformation is
reached versus the time at a certain temperature. An example is shown
2 The unit of B depends on the exponent and is s−1MPa−n. To avoid this awkward

unit, the stress can be normalised, for example by dividing it by Young’s modulus,
resulting in a unit of s−1.

3 Self-diffusion is the diffusion of atoms in a matrix of the same atoms.
4 The maximum service temperature also depends on the application. Materials in

rocket engines that are used only for a few minutes can serve at higher tempera-
ture than materials used in power plants where the service time may exceed ten
years.
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Table 11.1. Approximate maximum service temperature Tmax of several technical
materials under high mechanical loads compared to the melting temperature Tm.
Values of Tm refer to the pure material, not to the alloy which may start to melt at
temperatures considerably lower than Tm

material Tm/K Tmax/K Tmax/Tm

aluminium alloys 933 450 0.48
magnesium alloys 923 450 0.49
ferritic steels 1 811 875 0.48
titanium alloys 1 943 875 0.45
nickel-base superalloys 1 728 1 300 0.75
Al2O3 2 323 1 200 0.52
SiC 3 110 1 650 0.53

log t

log Rm/t/T

T1

T2

T3

T3 > T2 > T1

Fig. 11.3. Schematic creep diagram. At different temperatures, the stress that
causes fracture after a certain time is plotted. Each point on the curve corresponds
to one experiment. Rm/t/T is the stress in a specimen that fails after a time t at
temperature T . For example Rm/100 000/550 is the failure stress after 105 h at 550℃

schematically in figure 11.3. Each point in the diagram represents one exper-
iment. The diagram again illustrates that the life time at high temperatures
is in principle finite because the creep strain accumulates over time.

If a component is to be made of a new, temperature-resistant mate-
rial, a particular problem has to be solved: Imagine a turbine shaft of
a new steam turbine that is to be manufactured from a new ferritic
steel promising higher steam temperatures and thus a higher efficiency.
With a required life time of the shaft of 200 000 h, it is not sensible to
wait for creep data measured experimentally at comparable times, for
this would require about twenty years. To avoid this, data at shorter
testing times, which are partially measured at temperatures beyond
the service temperature, are extrapolated to larger service times. This
is frequently done using the so-called Larson-Miller parameter, moti-
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vated by the following considerations: The exponential dependence of
the creep rate on temperature shows that thermal activation plays an
important role (see appendix C.1). Assume that a certain number of
microscopic processes are required to obtain a certain strain or dam-
age of the material, without considering the actual mechanisms behind
these processes. The probability of such a process depends on the tem-
perature via the Boltzmann factor exp(−Q/kT ). If the time until a
specific total strain or a specific damage is accumulated is denoted by
tf , the quantity

θ = tf exp

„
− Q

kT

«
(11.3)

is a constant according to this assumption. The energy Q depends on
the stress because the external stress may have an effect on the micro-
scopic processes by supplying additional energy, analogous to the pro-
cesses during thermally activated passing of obstacles by dislocations
(section 6.3.2) or during relaxation processes in polymers (section 8.2.2).
The microscopic explanation is postponed to section 11.2.2.

If we take the logarithm of equation (11.3), we find

Q

k
= T ln

tf
θ

. (11.4)

The left-hand side of this equation is an unknown function of the stress,
called the Larson-Miller parameter P . The quantities tf and θ are di-
vided by their unit h to render them unit-free. The equation can be
re-written as

P = T

„
ln

tf
h

+ C

«
. (11.5)

The constant C = − ln θ is called the Larson-Miller constant, usually
taking values between 35 and 60 when the time is measured in hours
and the temperature in kelvin. In practice, a value of C = 46 is fre-
quently used. The exact value of the constant depends on the material
and has to be measured experimentally.

Frequently, the decadic logarithm is used instead of the natural
logarithm in describing the time tf . In this case, a pre-factor ln 10 has
to be factored out:

P = T

„
ln 10 lg

tf
h

+ C

«
= T ln 10

„
lg

tf
h

+
C

ln 10

«
.

This factor is usually absorbed into the (now modified) Larson-Miller
parameter, resulting in the equation

P ′ = T

„
lg

tf
h

+ C′
«

. (11.6)
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Since the Larson-Miller parameter is only used qualitatively, this scal-
ing is irrelevant. The modified Larson-Miller constant takes a value of
C′ = 20 if C = 46. If we plot the stress versus P and choose the ap-
propriate value of C, curves measured at different temperatures can
in most cases be mapped onto a single master curve with sufficient
precision. Using the example of the steam turbine shaft and assuming
a parameter of C′ = 20 and a service temperature of 600℃, testing
times of 10 000 h at 650℃ are sufficient to get some clues on the service
strength at 600℃ and 200 000 h. Obviously, the predictions will become
less precise if the ratio of extrapolation becomes larger. One possible
source of error are phases in the material that are unstable at the higher
temperature. If these phases embrittle the material, extrapolating to
longer times at lower temperatures can severely overestimate the life
time. For this reason, a new material will only be used if data have
been acquired at testing times of several ten thousand hours. In paral-
lel, creep experiments with estimated fracture times of 100 000 h and
more will be started to provide a time buffer in the case of unexpected
material behaviour.

A further example of using the Larson-Miller parameter can be
found in exercise 32.

11.2 Creep mechanisms

Depending on the temperature and the stress, different microscopic processes
are important in determining creep behaviour. These will be discussed in
this section. We will see that different processes are important at different
temperature and stress values; a fact that can be visualised using so-called
deformation mechanism maps.

11.2.1 Stages of creep

Before we discuss the different microscopic creep mechanisms in detail, we
want to explain the difference between primary and secondary creep in this
section.

As in time-independent plastic deformation, dislocations play an impor-
tant role in the time-dependent plastic deformation of metals. At the onset of
creep deformation, the number of dislocations in the material usually increases,
causing hardening that can be experimentally observed by the reduction in
the creep rate at constant stress. However, the dislocation density cannot in-
crease arbitrarily since recovery occurs simultaneously (see section 6.2.8), with
dislocations annihilating by climb. This process becomes the easier, the closer
the dislocations are. Accordingly, after some transition time, an equilibrium
between the generation of additional dislocation segments by plasticity and
the annihilation of dislocations by recovery will be found. This equilibrium
causes the creep rate to become constant in the secondary stage.
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Fig. 11.4. A nickel-base superalloy changes its microstructure during loading. There
is no stationary value of the creep rate analoguous to figure 11.1(a)

In some materials, the microstructure can change at elevated temperatures.
For example, the particles in precipitation hardened alloys usually coarsen
over time. In this case, there will be no stationary region with constant creep
resistance of the material. Instead, the creep rate continuously increases after
a minimum has been reached. This is shown for the example of a nickel-base
superalloy with a high fraction of cuboid precipitates in figure 11.4.

11.2.2 Dislocation creep

Analogously to the deformation at low temperatures, creep deformation can
also occur by dislocation movement in metals. However, there is one crucial
difference. If an edge dislocation encounters an obstacle e. g., a precipitate,
it needs a certain minimal stress to overcome the obstacle at low tempera-
tures; otherwise it will be stopped. At elevated temperatures, the dislocation
can evade the obstacle by adding or emitting vacancies (see figure 6.31 on
page 197). Using this mechanism, called climb, the dislocation can leave its
original slip plane as we already saw in section 6.3.4.

In this case, the strain rate is determined by the rate of emission or ab-
sorption of vacancies. Figure 11.5 shows the example of two edge dislocations
pinned at two obstacles. Dislocation 1 has to absorb vacancies to climb; dis-
location 2 needs to emit them. Thus, vacancies can be transported from one
dislocation to the other, with one dislocation acting as vacancy source, the
other as vacancy sink. The vacancy current density, j, determines the rate of
deformation. This quantity can be estimated.
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Fig. 11.5. Pile-up of dislocations at obstacles and vacancy diffusion. Dislocation 1
is a vacancy sink, dislocation 2 a vacancy source

If there is no external stress, the vacancy concentration n is determined
by the enthalpy required to create a vacancy, QV. In this case, the
vacancy concentration is (see appendix C.1)

n = exp

„
−QV

kT

«
. (11.7)

To study the effect of an external stress, we can use the following con-
sideration: If there is an external stress, dislocation 2 will move a bit on
emitting a vacancy. The external stress τ does the work τV ∗ according
to section 6.3.2, where V ∗ is the so-called activation volume. The total
energy needed to create a vacancy is reduced by this amount. If we
assume that the vacancy concentration is still in equilibrium, its value
at the position of dislocation 2 is

n2 = exp

„
−QV − τV ∗

kT

«
. (11.8)

Thus, it is larger than without an externally applied stress.5

Near dislocation 1, additional energy is required to create a va-
cancy. The vacancy concentration is thus reduced because the disloca-
tion tends to absorb vacancies. The concentration becomes

n1 = exp

„
−QV + τV ∗

kT

«
.

5 In the discussion of the Larson-Miller parameter in section 11.1, we used a stress-
dependent energy in the Boltzmann factor. Here, we found the reason for this
dependence.
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Thus, there is a vacancy concentration gradient between dislocation 1
and 2. It is determined by the difference of the two densities and by
the distance l between the dislocations. In a material containing several
obstacles, l is proportional to the mean distance of the obstacles. This
gradient causes diffusion of vacancies from dislocation 2 to dislocation 1.
In this argument, we assumed that the vacancy concentration at both
dislocations can still be described by using the Boltzmann equation
which is valid only in thermal equilibrium. This is a valid assumption
provided that the energy τV ∗ is small compared to the enthalpy of
vacancy formation QV.

According to Fick’s law, the vacancy current density is proportional
to the gradient of the vacancy concentration:

j = −D0 exp

„
−Qex

kT

«
∂n

∂x
. (11.9)

Here, D0 is the diffusion constant of vacancy diffusion and Qex is the
activation energy for vacancy migration i. e., the exchange of a vacancy
with a neighbouring atom.

The vacancy concentration gradient ∂n/∂x can be assumed as con-
stant in the case of small fluctuations in concentration:

∂n

∂x
=

n1 − n2

l
. (11.10)

Since τV ∗ is usually small compared to the enthalpy of vacancy forma-
tion QV, the gradient can be approximated as follows:

∂n

∂x
=

n1 − n2

l
= −1

l
exp

„
−QV

kT

« „
exp

„
τV ∗

kT

«
− exp

„
−τV ∗

kT

««
≈ − exp

„
−QV

kT

«
2τV ∗

lkT
. (11.11)

Here we used the approximation formula exp x ≈ 1 + x for x � 1.
We finally find the vacancy current density as

j = −D0 exp

„
−Qex

kT

«
n1 − n2

l

= D0 exp

„
−Qex

kT

«
2τV ∗

lkT
exp

„
−QV

kT

«
.

According to this calculation, the vacancy current density is

j =
2τV ∗

lkT
D0 exp

(
−QV + Qex

kT

)
, (11.12)

where the product of the diffusion constant D0 and the exponential term is the
diffusion coefficient for volume diffusion, DV. The quantities QV and Qex are
the enthalpy of vacancy formation and vacancy migration, τ is the externally
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applied shear stress, l is the distance between the obstacles, and V ∗ is the
activation volume (see section 6.3.2). The strain rate ε̇ is proportional to the
vacancy current density j and to the dislocation density %. Thus, ε̇ ∝ j% holds.
In the stationary state, the dislocation density % is usually proportional to the
square of the stress [51].6 If we insert the equation for the current density (and
use τ ∝ σ), we finally find

ε̇ =
Aσ3

kT
D0 exp

(
−QV + Qex

kT

)
=

Aσ3

kT
DV(T ) .

(11.13)

A is a material parameter that has to be determined experimentally. The
strain rate thus depends exponentially on the temperature and with a power
law on the stress. Equation (11.13) can only be used to describe secondary
creep because it does not take into account the evolution of the dislocation
density during primary creep or the damage processes occurring in tertiary
creep.

The exponential dependence of the strain rate on the temperature has been
confirmed experimentally. The relation between strain rate and stress is found
to follow a power law, as predicted by the equation (see also section 11.1), but
in reality the creep exponent typically takes values between 3 and 8. Due to
the large variations of the creep exponent in different materials, the value of
the factor A can differ by several orders of magnitude. The activation energy
in equation (11.13) is frequently stated per mole in the units kJ/mol. In this
case, Boltzmann’s constant k has to be replaced by the gas constant R in the
equation as explained in appendix C.1.

In deriving equation (11.13), we assumed that the vacancy diffusion oc-
curs through the undistorted crystal (volume diffusion). However, vacancy
transport can also occur mainly along lattice defects like dislocation lines (dis-
location pipe diffusion). In this case, the activation energy for site exchange is
smaller due to the lattice distortion. Because of this difference, vacancy trans-
port along dislocation lines dominates at low temperatures, whereas volume
diffusion is the faster mechanism at higher temperature. Large stresses also
favour transport along dislocations because the dislocation density increases
due to the formation of new dislocations (work hardening). We also required
in deriving equation (11.13) that the product of external stress and activation
volume is small compared to the thermal energy kT . This is not the case
at high deformation speeds and stresses. In this case, the relation between
strain rate and stress is exponential and the power law is not valid anymore
(power-law breakdown) [51].
6 A similar relation was already discussed in the context of work hardening, see

equation (6.20).
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Fig. 11.6. Movement of vacancies in diffusion creep

11.2.3 Diffusion creep

At high temperatures, dislocation creep – i. e., dislocation movement aided by
vacancy diffusion – is not the only mechanism contributing to deformation.
Vacancy diffusion alone can cause a deformation without any dislocations
being involved. In this process, called diffusion creep, grain boundaries are
sources and sinks of vacancies. It is mainly this mechanism that determines
the creep behaviour of ceramics. As illustrated in figure 11.6, vacancies are
formed at grain boundaries with a normal vector oriented in the direction of
the tensile stress. These vacancies move to grain boundaries with compressive
stresses or lower values of the tensile stress. The material itself moves in the
opposite direction from regions with compressive to those with tensile stresses.

The derivation of the strain rate in diffusion creep is analogous to that
of the previous section. Again, the vacancy current density is calculated and
related to the strain rate.

As in section 11.2.2, we start by calculation the vacancy concentration.
In equilibrium and without externally applied stress, the vacancy con-
centration is n = exp(−QV/kT ), where QV is again the energy for the
formation of a vacancy. If we now consider a grain boundary whose
normal direction is in the direction of the tensile stress (figure 11.6),
the material can elongate in the loading direction if an atom from the
crystal lattice is added at the grain boundary, creating an additional
vacancy in the crystal. The external stress does some work because the
material lengthens (on average) by the quotient of the volume Ω of the
vacancy and the cross section of the grain boundary considered. The
force equals the stress multiplied with the cross section of the grain
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boundary. The work done is thus σΩ, independent of the size of the
grain boundary. On the other hand, work σΩ must be done to create
a vacancy in a region that is under compressive stress σ.

The vacancy concentration in the regions 1○ and 2○ from figure 11.6
is thus

n1 = exp

„
−QV + σΩ

kT

«
,

n2 = exp

„
−QV − σΩ

kT

«
.

The vacancy concentration gradient can be estimated, according to
equation (11.10), as (n1 − n2)/d, with the grain size d replacing the
dislocation distance. Thus, a vacancy current density

j = −D0 exp

„
−Qex

kT

«
n1 − n2

d

=
2σΩ

dkT
D0 exp

„
−QV + Qex

kT

« (11.14)

results, with d being the mean diffusion length, approximately equal to
the grain size.

The creep rate ε̇ is proportional to the vacancy current density divided by the
size of the grain. Thus, we find

ε̇ = ANH
σΩ

kT

D0

d2
exp

(
−QV + Qex

kT

)
= ANH

σΩ

kT

DV

d2
.

(11.15)

Here, ANH is a material parameter, σ the external stress, Ω the volume of
a vacancy, d the grain size, and DV the diffusion coefficient for self-diffusion
through the bulk material. This process is called Nabarro-Herring creep. Since
the stress dependence is linear, Nabarro-Herring creep is most important at
low stresses, whereas dislocation creep is more important at high stresses.

Since the creep rate is inversely proportional to the square of the grain size,
creep is favoured if the grains are small. In contrast to time-independent plas-
tic deformation, where small grains are preferred (grain boundary strengthen-
ing, see section 6.4.2), large grains are advantageous in materials that creep.

Vacancy diffusion needs not to occur through the bulk material in diffusion
creep. Instead, vacancies may move directly along the grain boundaries (see
figure 11.7). The activation energy of vacancy diffusion along a grain boundary
is smaller than in the bulk because the lattice is distorted.

As before, the vacancy current density j is inversely proportional to the
grain size. The derivation of the current density in the bulk material
can thus be copied exactly, simply replacing the activation energy with
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Fig. 11.7. Movement of vacancies along grain boundaries in diffusion creep

the smaller activation energy along the grain boundary. The number
of vacancies moving through the grain per unit time is given by the
vacancy current density multiplied by the cross section of the region
the vacancies are moving through. This is dδ, where δ denotes the
thickness of the grain boundary.

In total, the rate of vacancy diffusion is thus jdδ. The growth
rate equals this rate, normalised by the cross section of the grain i. e.,
jdδ/d2 = jδ/d. To get the strain rate, we again need to divide by the
grain size, yielding the final result ε̇ ∝ jδ/d2 ∝ 1/d3.

The strain rate for grain boundary diffusion creep is thus

ε̇ = AC
σΩ

kT

δDGB

d3
. (11.16)

δ is the thickness of the grain boundary, DGB is the diffusion coefficient of
self-diffusion along the grain boundary, and AC is another material parameter.
This process is called Coble creep. Due to the strong dependence on the grain
size, Coble creep is most important if the grains are small. Since the activa-
tion energy of self-diffusion along the grain boundaries is smaller than in the
volume, Coble creep is also dominant compared to Nabarro-Herring creep at
low temperatures.

Because the shape of the grains changes in diffusion creep, neighbouring
grains have to deform in a compatible manner, analogous to the compatibility
of deformation in grain boundary strengthening as discussed in section 6.4.2.
This is one cause of grain boundary sliding, described in the next section.

Diffusion creep is also important in fibre composites. It was shown in sec-
tion 9.3.2 that the load transfer to a fibre is determined only by the aspect
ratio, the quotient of length and diameter. That the length is considered to
be important in technical applications is only due to the fact that the fibre
diameter cannot be made arbitrarily small, whereas the length can be as large
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as desired. However, at high temperatures, the fibres can be unloaded by diffu-
sion processes. Atoms of the matrix can move along the fibre-matrix interface
and relax the stress between fibre and matrix. Similar to equation (11.16), the
absolute size of the fibre now becomes important and only sufficiently long
fibres can have a strengthening effect.

11.2.4 Grain boundary sliding

At high temperatures, grains in metals and ceramics can move against each
other. This process is called grain boundary sliding.

The strain rate of grain boundary sliding cannot be estimated as simply
as for the other processes. It is [26]

ε̇ = AGBS
δσnDGB

d
. (11.17)

As usual, AGBS is a material parameter, δ is the thickness of the grain bound-
ary, σ the externally applied stress, DGB the diffusion coefficient of grain
boundary diffusion, and d the diameter of the grain. The creep exponent n of
grain boundary sliding usually takes values between 2 and 3.

In metals, grain boundary sliding usually contributes only slightly to the
overall deformation, but it is nevertheless important for two reasons: First, in
diffusion creep, grain boundary sliding ensures the compatibility of the grains
during the deformation (see also section 6.4.2 and the end of the previous sec-
tion) as sketched in figure 11.8. Second, at points where three grain boundaries
meet (triple points), movement of the grain boundaries by sliding can cause
a large concentration in local stresses and thus induce damage by rupture of
the grain boundaries (see also section 11.3). It is thus doubly advantageous to
increase the resistance of the grain boundary against sliding: deformation by
diffusion creep is impeded, and the danger of early damage is reduced. This
will be discussed further in section 11.4.

In ceramics, the strength at high temperatures is often limited by grain
boundary sliding. The reason for this is the presence of a glassy phase at the
grain boundaries (see also section 7.1). These amorphous regions have a much
lower softening temperature than the grains themselves. This ‘lubricating film’
eases sliding of the grains, without dislocation movement inside the grains be-
ing necessary. One important goal in manufacturing ceramic high-temperature
materials is thus to reduce the amount of glassy phase as much as possible.

11.2.5 Deformation mechanism maps

The various creep mechanisms discussed so far differ in their temperature de-
pendence because the activation energy of the mechanisms is different. Further-
more, they differ in their stress-dependence. The creep exponent takes values
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Fig. 11.8. Grain boundary sliding ensures the compatibility of grains which would
be violated if only diffusion creep would occur
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Fig. 11.9. Idealised deformation mechanism map (after [26])

between 1 in diffusion creep and 3 in dislocation creep, with even higher val-
ues occurring in reality. Thus, depending on the external conditions, different
creep mechanisms dominate the behaviour.

So-called deformation mechanism maps allow to read off the dominant
mechanism under different conditions. Figure 11.9 shows a schematic defor-
mation mechanism map. In the diagram, the temperature and the external
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Fig. 11.10. Deformation mechanism maps (after [35]). The grain size is 32 µm
in both cases

stress, normalised by the relevant material parameters (melting temperature
and shear modulus), are used as axes so that the dominant deformation mech-
anism can be read off.

At low external stresses and low temperatures, the material deforms elas-
tically. At higher temperatures, diffusion creep starts, being stronger at small
stresses than dislocation creep because of its lower creep exponent. Because
of the lower activation energy for grain boundary diffusion, this mechanism
is more important than bulk diffusion at low temperatures. Since the creep
exponent is the same in both cases, the two regions are separated by a vertical
line.

If we move on to larger stresses, dislocation creep with its larger creep
exponent becomes dominant. Vacancy diffusion along dislocation lines is more
important than diffusion through the bulk material at lower temperatures
since its activation energy is smaller. Because the creep exponent is larger for
diffusion along the dislocations than through the bulk, the separating line is
inclined.
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At even higher stresses, time-independent plastic deformation begins. If
the stress level reaches about one tenth of the shear modulus, the theoretical
strength of the material is reached.

Diagrams like this can be compiled for different materials and material
states. Figure 11.10 shows the deformation mechanism maps of aluminium
and tungsten at a grain size of 32 µm. Although both maps have the same
overall structure as the schematic map from figure 11.9, they nevertheless
differ in the size and exact shape of the different regions.

Figure 11.11 shows how the grain size changes the deformation mecha-
nisms, using the example of silver. The regions are shown for three different
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Fig. 11.13. Schematic illustration of cavern-type pores at grain boundaries

grain sizes, making it easy to see that creep processes are more important at
small grain size and start at lower temperatures. This is due to the grain size
dependence of diffusion creep.

Since creep processes are time-dependent, the dominant mechanism also
depends on the strain rate. This can also be represented in the diagrams as
shown in figure 11.12. At high strain rates i. e., high stresses, diffusion creep
becomes less important in comparison to dislocation creep.

11.3 Creep fracture

After sufficiently long loading times, creeping materials fail by creep fracture.
The strain rate, which attained its minimum value during secondary creep,
increases again, and tertiary creep starts, ending with the final fracture, so-
called creep rupture. In most cases, creep fracture is distinguished by material
failure at the grain boundaries, not inside the grains. In contrast to ductile
fracture, creep fracture is thus usually intercrystalline. Transcrystalline frac-
ture usually occurs only at high stresses [40].

That fracture occurs at the grain boundaries indicates a damage process
there. It is due to the formation of pores and microcracks. Microscopically,
two different types of damage are distinguished in a creeping material. On the
one hand, oval cavern-type pores can be formed at grain boundaries which are
loaded under tension, on the other hand, wedge-type pores may be induced
at triple points where three grain boundaries meet.

Cavern-type pores form by diffusion processes in which the material in-
creases its length in the direction of the tensile stress by moving atoms from
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Fig. 11.14. Schematic illustration of wedge-type pores at triple-points

the region of the forming pore to neighbouring zones (figure 11.13). Completely
analogous to the precipitation of particles (see section 6.4.4), a nucleation bar-
rier has to be overcome to form a cavern-type pore, for the energy required
to form an inner surface is proportional to the square of the pore diameter,
whereas the energy gain depends cubically on the diameter. For small pores,
the surface energy dominates. Pores are therefore not formed initially, but
only after a long time. Their formation is favoured at high temperatures and
large testing times because this raises the probability to overcome the nucle-
ation barrier by thermal activation. Local stress concentrations, for example
due to precipitates on the grain boundary or dislocation pile-up, increase the
energy gain and thus favour pore formation.

Wedge-type pores are formed by grain boundary sliding at triple points
(see figure 11.14). In these regions, there is a large stress concentration (see
section 11.2.4) that can cause failure of the grain boundaries if their cleavage
strength is exceeded. Accordingly, this type of damage usually occurs at high
stresses.

Both damage mechanisms cause a decrease of the effective cross section of
the specimen and stress concentrations by notch effects. This is the reason for
the rapid increase in the strain rate observed in tertiary creep.

11.4 Increasing the creep resistance

Materials heavily loaded under creep conditions must meet particular require-
ments.
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We can conclude from the discussion of the previous sections on mech-
anisms that a large activation energy of vacancy diffusion is advantageous
because vacancy diffusion is important in almost all of the mechanisms dis-
cussed. Vacancy diffusion is weak if the formation of a vacancy is difficult and
if the diffusion of any formed vacancy is impeded. The enthalpy of vacancy
formation is correlated with the binding forces in the material and thus with
the melting temperature. Therefore, the homologous temperature T/Tm can
be used as parameter to characterise the creep properties.

Vacancy diffusion occurs by the exchange of a vacancy with its neigh-
bouring atom. The atom has to overcome an energy barrier formed by the
surrounding atoms. This barrier is the higher, the closer packed the atoms
are; close-packed structures are thus more creep resistant. For example, the
diffusion coefficient for self-diffusion of iron is

Dα = 2.0× 10−4 · exp
(
−251 kJ/mol

RT

)
in α iron (body-centred cubic) and

Dγ = 1.8× 10−5 · exp
(
−270 kJ/mol

RT

)
in γ iron (face-centred cubic) [51]. At a temperature of 600℃, the diffusion
speed is 150 times larger in α than in γ iron.

The grain size also affects the creep properties, particularly so in diffusion
creep. The coarser the grain is, the longer the diffusion paths of the vacancies
becomes, thus reducing the strain rate. The grain size is also important in
creep damage since cavern-type pores form at grain boundaries under tension.
Grains elongated in the load direction are also advantageous because, due to
their larger area, they reduce the shear stresses that evolve along grain bound-
aries during diffusion creep. Elongated grains can be achieved, for example,
by drawing wires. They are one important reason for the long life-time of
tungsten filaments in light bulbs. Gas turbine blades with strongly elongated
grains in the loading direction are also highly creep resistant. One additional
effect in these blades is that a crack cannot propagate easily even if single grain
boundaries fail because the next grain boundary that is perpendicular to the
loading direction is usually far away (see figure 11.15). The grains may in fact
be as long as the component, completely avoiding transversal grain boundaries
(see figure 2.12). Single-crystal alloys are obviously especially suitable.

Similar to time-independent plastic deformation, creep deformation in met-
als is dominated by dislocation movement, especially at higher stresses. Mecha-
nisms that impede dislocation movement are thus also important in producing
creep-resistant materials. However, these mechanisms have to be temperature
resistant.

Surveying the strengthening mechanisms discussed in chapter 6, we see
that grain boundary strengthening is not suitable in creep applications be-
cause we need large grains as explained above. Work hardening can also not
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Fig. 11.15. Creep damage in an isotropic and a directionally solidified material
(after [26]). Crack propagation is strongly impeded in the directionally solidified
material. In a technically used directionally solidified alloy, the elongation of the
grains is much more pronounced than in this sketch, see figure 2.12

be used since a large initial dislocation density would rapidly reduce by recov-
ery processes to a value that is determined by temperature and strain rate,
destroying any initial hardening effect.

A suitable mechanism is solid solution hardening, provided the dissolved
elements have a large activation energy for diffusion and are thus diffusing
slowly. Accordingly, carbon in steel cannot strengthen the material at high
temperatures because the interstitially dissolved carbon atoms diffuse rapidly
and move along with the dislocations.7 High-melting foreign atoms, on the
other hand, can contribute significantly to the creep strength of metallic high-
temperature materials since their bonds with the matrix atoms are usually
strong, causing a limited mobility and thus making it difficult for dislocations
to take the atoms with them. Examples are molybdenum, tungsten, and rhe-
nium that are added as solid solution strengtheners to nickel-base superalloys
at weight fractions of up to 10 %.

Another possible mechanism is precipitation hardening of metals. Here,
however, the following problem may occur: To achieve a fine distribution of
the precipitates, coherent particles are needed. These, however, are usually
only metastable and transform to an incoherent equilibrium phase at high
temperatures. The interfacial energy strongly increases, causing accelerated
particle growth and a loss of the hardening effect. This is the crucial reason
why precipitation-hardened aluminium alloys cannot be used above 0.5 T/Tm

7 Carbon is, nevertheless, an important alloying element in creep-resistant steels,
for it can form precipitates in the form of carbides.
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AlNi Fig. 11.16. Unit cell of the γ′ phase Ni3Al

in long-term applications. Nickel-base superalloys play a special role in this
context because a coherent equilibrium phase exists which only coarsens slowly
(see figure 11.4(b)). This is the so-called γ′ phase with stoichiometry Ni3Al.
Its unit cell only differs slightly from that of the face-centred cubic matrix: the
nickel atoms in the binary system Ni3Al are situated almost exclusively on the
face-centred positions, whereas the aluminium atoms occupy the corners of the
cell (figure 11.16).8 While the lattice constants of precipitates and matrix in
the binary system Ni-Al differ by more than one percent, adding other alloying
elements can reduce the lattice mismatch to 0.1% to 0.2%. This reduces the
interfacial energy to a minimum and causes a very slow coarsening process.
For this reason, these alloys can be used at 75% of their melting temperature,
justifying the name ‘superalloys’.

The volume fraction of the second phase in modern superalloys can be as
high as 70%. At these large values, dislocations are constrained to move in the
small channels between the cuboid precipitates, forming highly elongated dis-
location loops (figure 11.17). This impedes dislocation movement and causes
the high strength of these alloys. The dislocations can cut the particles only
at rather high stresses. Thus, stresses of 100 MPa can be applied at tempera-
tures of 1000℃ and service times of several thousand hours without material
failure.

Dispersion-strengthened materials (see section 6.4.4) also have a high
creep resistance. If a power law according to equation (11.2) is used
to describe the relation between strain rate and stress, extremely high
creep exponents with values between 20 and 200 result. The strain rate
rapidly reduces to very small values with decreasing stress, resulting in
a high creep strength.

This unusual creep property is caused by the interaction of the dis-
locations with the dispersoids. The dispersoids are small enough to be

8 In multi-component alloys, titanium and tantalum may take some of the sites usu-
ally occupied by aluminium. Therefore, the notation Ni3(Al, Ti, Ta) is frequently
used.
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Fig. 11.17. Elongated dislocation loops in a nickel-base superalloy (transmission
electron microscopic picture) [127]

easily passed by climbing. Nevertheless, they strongly impede disloca-
tion movement because the line tension of the dislocation is reduced
at the interface to the dispersoid, resulting in an attractive interaction.
To detach the dislocation from the dispersoid, a high stress is required.
If the external stress is not sufficient, part of the required energy has
to be provided by thermal activation. Because the required energy de-
pends on the external stress, which thus enters the Boltzmann factor in
the exponent, the dependence on the stress is unusually strong and can
be approximately described by a power law with large creep exponent.

To enable this mechanism, the line energy of the dislocation at the
particle interface must be reduced.9 This is also the case if the crystal
contains a cavity instead of a particle. Tungsten alloys, for example,
can be strengthened by adding potassium particles which evaporate at
high temperatures and thus form gas-filled cavities.

Another example of how the different strengthening mechanisms interact is
shown in table 11.2. The table shows the creep rupture strength at a loading
time of 100 000 h for different steels. Whereas the plain carbon steel C 35 has no
significant strength at temperatures above 450℃, adding only 1% chromium
and 0.4% molybdenum in the steel 13 CrMo 4-4 significantly increases the
creep resistance. Raising the chromium or molybdenum content further and
adding vanadium strengthens the effect. Strengthening is, on the one hand,
due to carbide particles whose stability increases from Fe3C to Cr23C6 to
VCX .10 On the other hand, molybdenum and chromium not bound in the
carbides cause solid solution strengthening. The service temperature can be
9 In contrast to the obstacles discussed in section 6.3, it is now important that the

interaction is attractive, not repulsive, because a repulsive obstacle can be easily
avoided by climbing.

10 Vanadium carbide does not precipitate in a unique chemical composition and is
thus denoted VCX .
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Table 11.2. Creep rupture strength of several alloys (after [39,125,129]). The creep
rupture strength Rm/100 000/T i. e., the stress needed to cause fracture in a specimen
at temperature T after 105 hours (creep rupture time), is stated. The creep resistance
of the ferritic steels with large amounts of vanadium and chromium is significantly
larger than that of simpler steels because vanadium and chrome carbides have a
better temperature stability. Due to their close-packed face-centred cubic structure,
the creep resistance of austenitic steels is larger. The creep strength of the nickel-base
superalloys IN 738 (polycrystalline) and SC 16 (single crystalline) were estimated
from Larson-Miller data

Rm/100 000/T /MPa
temperature in ℃ 420 450 500 550 600 700 800 900

ferritic steels

C 35 108 69 34
19Mn5 136 85 41
24CrMo 5 308 226 118 36
10CrMo 9-10 221 135 68
13CrMo 4-4 285 137 49
21CrMoV5-11 410 349 212 92

austenitic steels

X 5CrNi 18-10 127 74 30
X10CrNiNb 18-9 300 205 131 55 18
X5CrNiMo 17-12-2 145 52 23

nickel-base superalloys

IN 738 360 155
SC16 240 110

increased further by using austenitic steels like X 5CrNi 18-10. This is not only
due to the higher content of alloying elements, but also to the lower diffusivity
in the face-centred cubic lattice.

Grain boundary sliding, discussed in section 11.2.4, can be impeded by
adding discrete particles (e. g., carbides) at the grain boundaries. In this case,
sliding of the grain boundaries requires material transport from the side of
the particle under compression to the side loaded in tension, slowing down
the process.

In cast magnesium alloys, which are increasingly used in automotive indus-
try, the influence of grain boundary sliding is rather strong, partially due to
the fine-grained structure of these alloys. To improve the creep resistance, sili-
con can be added because it forms a Mg2Si phase on the grain boundaries and
thus impedes sliding. A similar effect can be achieved by adding rare-earth
metals which also cause precipitation hardening [111].
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Exercises

In this chapter, we present exercises to elaborate upon the topics discussed
in this book. Simple memorising exercises that can be solved by looking up
the topics are not given. Complete solutions to the exercises are provided in
chapter 13.

Exercise 1: Packing density of crystals

Frequently, crystal structures are visualised by drawing the atoms as touching
spheres. Using this assumption, calculate the packing density of

a) face-centred cubic,
b) body-centred cubic, and
c) hexagonal close-packed crystals!

Exercise 2: Macromolecules

Consider a polyethylene molecule with a degree of polymerisation of 104.

a) Calculate the molar mass of the molecule! The molar mass of carbon is
12.01 g/mol, that of hydrogen is 1.01 g/mol.

b) Calculate the length of the chain, assuming that it is in a straight con-
formation! The bond length between two carbon atoms is 0.154 nm, the
bond angle is 109°.

Exercise 3: Interaction between two atoms

Assume the following functions for the interaction energy between two atoms
of a molecule of common salt (NaCl):
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UA = −1.436
r

eV nm , UR =
5.86× 10−6

r9
eV nm9 .

a) Calculate the bond length of the diatomic molecule!
b) How large is the binding energy?
c) Compare the result of the calculation with the interatomic distance cal-

culated for a NaCl crystal with a density of % = 2.165 g/cm3! The molar
mass of Na is 23 g/mol, that of chlorine is 35.4 g/mol. Avogadro’s constant
(the number of molecules in a mol) is NA = 6.022× 1023 mol−1.

d) Estimate Young’s modulus of NaCl in the 〈100〉 direction! Neglect the
bonds between next-nearest neighbours and those even further away! Note:
1 eV = 1.602× 10−19 J.

e) The elastic constants of NaCl are C11 = 48.7 GPa, C12 = 12.6 GPa and
C44 = 12.75 GPa. Use these values to calculate E〈100〉! Compare this value
to your estimate!

Exercise 4: Bulk modulus

The bulk modulus K is a measure of the pressure ∆p needed to change a
material’s volume V0 by ∆V :

∆p = −K · ∆V

V0
. (12.1)

The minus sign accounts for the fact that positive pressure usually causes a
reduction in the volume.

a) Derive the relation between K and the elastic constants E, G, and ν in
an isotropic material at small deformations!

b) Calculate the bulk modulus of a material with a Poisson’s ratio of ν1 = 0,
ν2 = 1/3, and ν3 = 0.5! How does the volume of a tensile specimen change
with the uniaxial stress σ in the three cases?

c) Some rare materials possess a negative Poisson’s ratio. What is the
transversal strain for a positive normal strain in this case?

Exercise 5: Relation between the elastic constants

In section 2.4.3, we introduced equation (2.23), C44 = (C11−C12)/2, specifying
the relation between the components C11, C12, and C44 of the elasticity matrix
(Cαβ) of an isotropic material. Check this equation by prescribing a strain
tensor

(εij) =

 −ε 0 0
0 ε 0
0 0 0
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lA ¢lA

(a) Booth A. The rubber band is elon-
gated by the same distance ∆lA always

lB ¢lB

(b) Booth B. The rubber band is loaded
with the same force FB always

Fig. 12.1. Candy catapults, shown in the loaded state

and calculating the required stress state in the un-rotated xi coordinate system
and in a coordinate system with axes xi′ , rotated by 45°. To do so, use Hooke’s
law twice for the strain tensor, once in the xi and once in the xi′ coordinate
system!

Exercise 6: Candy catapult

At a child’s fair, two booths present almost identical candy catapults. At both
booths, candies are accelerated on a horizontal plane using rubber bands. At
booth A, the rubber band is stressed for each shot by lengthening it from
the initial length lA = lB by ∆lA = const (figure 12.1(a)), whereas booth B
stresses the rubber using a rope, a pulley, and a weight loading the band with
a force FB = const.

The cross section of both rubber bands is identical (A). Assume that
both rubber bands are linear-elastic. Young’s modulus of the rubber band
of booth B is twice as large as that at booth A: EB = 2EA.

At both booths, the take-off velocity of the candies is disappointingly small.
We want to find a way to increase the velocity without using additional ma-
terial or changing the construction of the catapults.

a) Start by deriving equations for the stored elastic energy W (el) when the
bands are stretched!

b) How does the stored energy change when Young’s modulus is increased or
decreased?

c) Derive an equation for the take-off velocity of the candies (mass m) at
both booths! Neglect the mass of the rubber bands and any occurring
friction!

d) Suggest a simple method to increase the take-off velocity! By what factor
does the velocity increase?
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Exercise 7: True strain

To compare nominal strain and true strain, we investigate two different defor-
mation processes of two rods: The first rod is strained in two steps ∆l1 and
∆l2, the second in a single step ∆l1+2 = ∆l1 + ∆l2.

a) Prove the inequality ε1 + ε2 6= ε1+2 for the strains!
b) Estimate how the strain measures differ when the length change ∆li is

small and large, respectively! To do so, sketch a diagram of the difference
∆ε versus ε1/ε1+2!

c) Show that, for the true strains, the equation ϕ1 + ϕ2 = ϕ1+2 holds!

Exercise 8: Interest calculation

This exercise illustrates that the question of what initial value is used to
calculate a quantity is not only important in calculating strains, but also in
calculating interests.

The customer of a bank invests an initial amount of G0 = 10 000AC at his
bank. He wants to double his money within ten years (G10).

a) Calculate the interest rate z0 required if the interest is always calculated
relative to the initial deposit G0!

b) How large is the required interest rate z if the interest is always paid on
the current deposit Gi?

Exercise 9: Large deformations

As in the solution to exercise 4 a), we again consider the deformation of a
brick with edge lengths li to the new lengths li + ∆li. This time, however, we
want to account for large deformations.

a) Calculate Green’s strain tensor G for this deformation!
b) Compare Green’s strain tensor G with the strain tensor ε for large and

small deformations!

Exercise 10: Yield criteria

A component made of a polycrystalline aluminium alloy with yield strength
Rp0.2 = 200MPa is loaded in a plane-stress state. The stress components are
σ11 = 155MPa, σ22 = 155 MPa, and τ12 = 55MPa.

a) Calculate the principal stresses!
b) Use the Tresca yield criterion to decide whether the material yields!
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Fig. 12.2. Stress-strain curve of
an aluminium alloy

c) Use the von Mises yield criterion to decide whether the material yields!
d) Can you decide which of the two results is correct? Justify your answer!
e) In experiments on single crystals, the yield strength of the slip systems

was determined as τcrit = 60 MPa. Use the von Mises yield criterion to
check whether a significant amount of slip systems in the polycrystal is
activated at the stress value given! The Taylor factor is M = 3.1.

f) Calculate the stress deviator σ′ for the given stress state!

Exercise 11: Yield criteria of polymers

In a thermoplastic, a yield strength of Rp = 40MPa was measured in tension,
whereas the stress in a compressive test is Rc = 50 MPa. The conically and
parabolically modified yield criteria are to be compared for several load cases.

a) At what purely hydrostatic stress does yielding occur according to the
two criteria?

b) A component made of this polymer is loaded with a stress state σ11 =
σ22 = −σ33 = 0.56 Rp, σ23 = σ13 = σ12 = 0. Use both criteria to check
whether the material yields!

c) Does the material yield at a state σ11 = −σ22 = −σ33 = 0.56 Rp, σ23 =
σ13 = σ12 = 0?

Exercise 12: Design of a notched shaft

A shaft with a circumferential round notch (see figure 4.3) with dimensions
D = 20 mm, d = 16 mm, and % = 4 mm is loaded in tension. It has to be
checked whether it can be used at a service load of F = 40 kN. The shaft is
made of an aluminium alloy with Young’s modulus of E = 68 000MPa and
the stress-strain curve shown in figure 12.2 (Rp = 202 MPa, Rm = 280 MPa).

a) Determine the stress concentration factor Kt using diagram 4.3!
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b) How large would the maximum stress at the notch root, σmax, be if the
material were linear-elastic? Could the shaft be used in this case?

c) Determine the Neuber’s hyperbola for the shaft under the given load! Add
it to the stress-strain diagram!

d) Determine the maximum stress and strain at the notch root from the
diagram!

e) Can the shaft be used? Justify your answer!

Exercise 13: Estimating the fracture toughness KIc

The stress in front of the crack tip shows a singularity. In this exercise, we
investigate why the material does not fail immediately although the stress is
numerically infinite.

To do so, we consider a sodium chloride crystal as in exercise 3. The crystal
contains a crack of length a. Assume that, even on the atomic scale, the stress
field at the crack tip can be described by equation (5.1). The crack is assumed
to propagate in the [100] direction.

a) Calculate the force on a single atomic bond situated directly in front
of the crack tip as a function of KIc! The lattice constant of NaCl is
aNaCl = 0.282× 10−9 m.

b) According to exercise 3, the spring stiffness between the atoms in the
NaCl-crystal is approximately k = 85 N/m. We make the arbitrary as-
sumption that the bond breaks when it is strained by one-tenth of the
lattice constant. Calculate KIc with this assumption!

c) Check the assumptions made in this calculation! Do you believe them to
be correct? Why?

Exercise 14: Determination of the fracture
toughness KIc

The fracture toughness of AlCuMg 2 is to be determined using a ct speci-
men. The dimensions of the specimen according to standard astm e 399 (see
figure 5.14(b)) are G = 62.5 mm, W = 50 mm, H = 60 mm, B = 25 mm.
AlCuMg 2 has the following material parameters: Rp0.2 = 510 MPa, Rm =
590 MPa. The initial crack introduced by cyclic loading was measured after
the test. Its length was a = 25mm. The stress intensity factor is calculated
using equation (5.30), with a geometry factor determined by equation (5.31).
Figure 12.3 shows a plot of the force versus the displacement of the specimen.
Use the method from section 5.2.7 and figure 12.3 to determine KIc!
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Fig. 12.3. Force F versus displacement ∆s to determine the fracture toughness

Exercise 15: Static design of a tube

In a power plant, a tube made of a newly developed austenitic steel is to be
used. Young’s modulus of the material is E = 200 000 MPa, its yield strength
is Rp0.2 = 1420 MPa, the cleavage strength is σC = 2200 MPa and the fracture
toughness is KIc = 90 MPa

√
m. At the moment, a tube diameter of D =

1000 mm with a wall thickness of t = 5mm is planned. The pressure within
the tube is p = 12MPa. Ultrasonic measurements can limit the largest crack
in the material to a size smaller than 2a = 3mm.

Hints: The stress state in a pressurised thin-walled tube is as follows: lon-
gitudinal stress σl = 0, radial stress σu = pD/(2t), circumferential stress
σr = 0 [18]. The geometry factor can be assumed as Y = 1.

a) Can the tube be used with the intended material and dimensions? Design
against yielding, cleavage fracture, and crack propagation!

b) Does your answer depend on whether the yield criterion of von Mises or
Tresca is used? Justify your answer!

c) If the pressure is increased from zero until a failure criterion is met, which
criterion is this? What is the corresponding pressure?

d) At what crack length are yield strength and fracture toughness reached
simultaneously?

e) Plot the failure criteria ‘yielding’ and ‘crack propagation’ in a failure-
assessment diagram! Sketch a more realistic curve together with the ide-
alised one!

f) Calculate the crack opening of a crack of length 2a = 3mm loaded in
mode I with the load specified above!
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Fig. 12.4. Dependence of the
shear stress on the relative dis-
placement x of one atomic layer
to the other

Exercise 16: Theoretical strength

We want to estimate the shear stress required to shift a whole layer of atoms
in a metal versus a neighbouring layer as sketched in figure 6.1. We assume a
simple cubic crystal with lattice constant a. We make the simplifying assump-
tion that the shear stress required to shift the layer can be represented by a
sine function as shown in figure 12.4.

a) Estimate the stress τF required to shift an atomic layer, assuming that
Hooke’s law τ = Gγ can be used for small shear values!

b) Explain why the atomic configuration is unstable at a displacement of
x = a/2 although the stress is τ = 0!

Exercise 17: Estimating the dislocation density

A metal cube of edge length a = 10mm is to be sheared plastically, resulting
in a total relative displacement of s = 0.1 mm of its top versus its bottom side.
The Burgers vector is 0.286 nm.

a) Estimate the minimum number of dislocations in the cube needed to allow
this deformation! Assume the cube to be a simple cubic single crystal with
crystal orientation parallel to the cube edges!

b) Calculate the resulting dislocation density!
c) How do the results change if we assume a polycrystalline material with

grain size d = 100µm?
d) If we were to string together all dislocations in the cube, what distance

would they cover?

Exercise 18: Thermally activated dislocation generation

Calculate the probability of a dislocation loop in aluminium being generated
by thermal activation! Assume that the minimum possible loop size is six
Burgers vectors so that at least one atom is enclosed by the loop! Calculate
the probability at temperatures of 300 K and 900 K! The shear modulus of
aluminium is G = 26 GPa, its Burgers vector is b = 2.86× 10−10 m.
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Table 12.1. Measured failure stresses in a ceramic

Experiment 1 2 3 4

Failure stress σ/MPa 244.69 54.60 665.15 90.02

Exercise 19: Work hardening

A sheet of aluminium is rolled from an initial thickness of 10 mm to a final
thickness of 5 mm. Using a transmission electron microscope, it was found that
the dislocation density increases from %0 = 1012 m−2 to %1 = 1016 m−2. The
prefactor in equation (6.20), needed to calculate the hardening contribution,
is kV = 0.1. The length of the Burgers vector in a face-centred cubic lattice is
b =

√
2/2 · a. The lattice constant of pure aluminium is a = 4.049× 10−7 mm,

the shear modulus is G = 26 200MPa, and the Taylor factor is M = 3.1.
Calculate the increase in strength due to this deformation!

Exercise 20: Grain boundary strengthening

Your task is to increase the yield strength of pure aluminium by grain bound-
ary strengthening. Your starting material is pure aluminium with a grain size
of dcoarse = 100µm (Hall-Petch constant k = 3.5 N/mm3/2). In a tensile test,
the yield strength is found to be Rp0.2 = 20MPa. What grain size is required
to raise the yield strength to a value of 100 MPa?

Exercise 21: Precipitation hardening

The yield strength of an aluminium-copper alloy is to be increased by precip-
itation hardening by ∆Rp0.2 = 600 MPa.

a) Calculate the required particle spacing of incoherent particles!
b) Calculate the particle radius, assuming a copper content of 4 vol-%! To

simplify the calculation, neglect the solubility of copper in the aluminium
matrix!

Exercise 22: Weibull statistics

The Weibull modulus m and the stress σ0 of a ceramic material are to be
determined. To do so, the failure strength of four identical specimens has
been measured (table 12.1). Determine the two parameters for this material
graphically, using the instructions from section 7.3.3!
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Fig. 12.5. Tank used in chemical
engineering

Table 12.2. Material parameters

Young’s modulus 70GPa
failure stress in bending σB 100MPa
Weibull modulus m 15

Exercise 23: Design of a fluid tank

You are the design engineer of a company working in chemical engineering.
Your task is to design the bearing plate of a tank used to store acids. The
tank has a capacity of 200 L with dimensions of L × B × H = 1000mm ×
400 mm× 510 mm. The bearing plate must bear a total weight of 250 kg.

The bearing plate is to be made of a ceramic and is fixed at its edges
using a metal frame (see figure 12.5). According to the supplier, the ceramic
material has the mechanical properties given in table 12.2. To avoid claims
for damages, the failure probability at full service load is to be limited to
Pf = 10−4.

The maximum bending stress of a rectangular plate supported at all edges
with homogeneous pressure p is approximately given by σ = 2pL2/d2, with L
being the length of the longer edge and d being the plate’s thickness.

a) Calculate the pressure load p, using a value of g = 9.81 m/s2!
b) Use the formula for the volume-independent Weibull statistics, equa-

tion (7.6) with V = V0, to calculate the thickness of the ceramic plate
required to bear the calculated pressure with the given failure probabil-
ity!

c) The supplier tells you that the failure stress of the material was measured
in bending using specimens with a volume of Vspec = 5×105 mm3. Correct
your design for this!

d) After the series production of the tank has already started, you get a tele-
phone call from the supplier who tells you that the failure stress was not
measured in bending, but in tension. Do you have to stop the production?
Justify your answer!

e) If the bearing plate were made of a metal with a yield strength of Rp =
100 MPa, how thick would the plate have to be?
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Exercise 24: Subcritical crack growth of a ceramic
component

In a plant producing common salt, a connecting pin is to be used that has
to service in concentrated saline solution at a temperature of 70℃. The pin
is loaded at a stress of σservice = 100MPa. The component has to serve for
25 000 hours with a failure probability of 0.5% at most. Due to the aggres-
sive environment, a metal cannot be used for the pin. Instead, hot isostatic
pressed aluminium oxide (Al2O3) is to be used, characterised by the following
parameters:

KIc = 3.2 MPa
√

m ,

m = 22 ,

σ0 = 375 MPa .

The geometry factor of the connecting pin is Y = 1.3. The maximum crack
growth resistance has been measured to

KIR = 3.5 MPa
√

m .

a) In experiments under the same environmental conditions, failure occurred
at a load of 140 MPa after 375.2 h and at a load of 150 MPa after 94.4 h.
The dependence between the crack propagation rate and the stress in the
pin is to be approximated by equation (7.2). Determine the parameters
in this equation using the experimental results! The inert strength has
been measured to be 355 MPa in an identical specimen. To solve this sub-
exercise, assume that there is no scatter in the material parameters so
that using Weibull statistics is unnecessary!

b) Now we consider the scatter of the parameters, using a Weibull statistics
for the failure probability. Can the ceramic be used in its present form
to guarantee the required service time at the stated failure probability?
Justify your answer!

c) What possible method do you suggest to enable using the component
nevertheless? Changing the design or switching to another material is not
possible due to severe time and cost restrictions.

d) Calculate the minimum proof stress in a proof test needed to exactly
meet the required failure probability! Derive a relation analogous to equa-
tion (7.16), replacing the failure probability Pf(σ) by the probability Pf(tf)
from equation (7.10)! Solve the equation for the proof stress!

e) How large is the fraction of components that fail during the proof test?

Exercise 25: Mechanical models of viscoelastic
polymers

As explained in section 8.2, the time-dependent behaviour of polymers can
be described using spring and dashpot elements. The behaviour of a spring
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element can be described with the equation σ = Eε, with σ being the stress,
ε the strain, and E Young’s modulus. A dashpot element behaves according
to ε̇ = σ/η, with strain rate ε̇ and viscosity η.

a) Start considering the Kelvin model from figure 8.7(a). Calculate the strain
as a function of time in a retardation experiment with prescribed stress σ!

b) What is the result if you perform a relaxation experiment instead?
c) In real-world polymers, part of the elastic deformation is time-independent.

Use a three-parameter model according to figure 8.7(b), assuming am
infinite viscosity of the dashpot element in series, to describe the behaviour
in a relaxation and retardation experiment!

d) Calculate the creep modulus and the relaxation modulus as function of
time, and calculate the relaxation and retardation time!

Exercise 26: Elastic damping

The time-dependence of elastic deformation causes elastic damping, a phe-
nomenon investigated in this exercise.

Assume that a component, for example a tensile specimen, made of a
viscoelastic material is loaded cyclically with angular frequency ω. After some
initial transient effects, the strain will also oscillate with the same angular
frequency ω. Due to the time-dependence of elastic deformation, stress and
strain are out of phase because the strain follows the current stress only with
some delay. The following time-dependence is assumed for stress and strain:

σ(t) = σ0 sin(ωt + δ) ,

ε(t) = ε0 sinωt .
(12.2)

a) Sketch the time-dependence of stress and strain and explain the meaning
of the parameter δ!

b) Write the stress as a function of the strain! Use an addition theorem to
split the stress into two components, one in-phase with the strain, the
other phase-shifted by 90°!

c) Draw a stress-strain diagram for a complete cycle!
d) Since stress and strain are out of phase, elastic energy is dissipated during

each cycle. Calculate the energy dissipated per volume in each cycle!
Hint: Use the relation∫

cos(arcsinx) dx =
1
2

(
x
√

1− x2 + arcsinx
)

.

Exercise 27: Eyring plot

Estimate the activation energy of the relaxation process responsible for the
deformation of polycarbonate from figure 8.9!
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Exercise 28: Elasticity of fibre composites

We want to calculate Young’s modulus of a fibre composite loaded in parallel
and perpendicular to the fibre direction (see sections 9.2.1 and 9.2.2). We start
by considering a polymer matrix composite with perfectly aligned, ‘infinitely’
long, uniaxial fibres.

a) What are the relations between stress and strain in the cases
• mechanical load parallel to the fibres,
• mechanical load perpendicular to the fibres?

Make the simplifying assumption in the case of loading perpendicular to
the fibres that the fibres are plates extending throughout the volume (see
figures 9.1(a) and 9.2(a))! Neglect the transversal contraction!

b) Use the relations derived in subtask a) to find an equation for the resulting
Young’s modulus for each case!

A polymer matrix composite comprises a polyester matrix (Em = 1500MPa)
and carbon fibres (Ef = 390 000 MPa).

c) Sketch the dependence of Young’s modulus on the fibre volume fraction
(between 0% and 100%) in both cases!

Exercise 29: Properties of a polymer matrix composite

A polymer matrix composite is made from a duromer matrix containing con-
tinuous carbon fibres aligned in the loading direction. Young’s modulus is
3 GPa in the matrix and 350 GPa in the carbon fibres, the tensile strengths
are 60 MPa and 4900 MPa. The volume fraction of the carbon fibres is 55%.

a) Estimate Young’s modulus of the composite in fibre direction!
b) Estimate the tensile strength of the composite in fibre direction! Start by

checking which component will fail first when the load is increased!
c) Assuming that the compressive strength of the matrix is the same as the

tensile strength, estimate the compressive strength of the composite!
d) How does your calculation of the tensile strength change if the strength-

ening fibres are as short as 5 mm, much smaller than the dimension of the
component? Assume that the short fibres are still perfectly aligned! The
interfacial strength between fibre and matrix is 30 MPa, the fibre diameter
is 8 µm.

Exercise 30: Estimating the number of cycles to failure

During a regular inspection, as done all 5000 cycles, a crack of length
a0 = 1mm was detected in the lever gear of a heavy-duty postage metre
machine. The following service parameters are known: At the service stress
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Fig. 12.6. S-N diagram for exercise 31

range of ∆σ = 100MPa and the stress ratio R = −1, the parameters of the
Paris law for the aluminium alloy used are C = 2 × 10−12 MPa−2 cycle−1,
and n = 2. The geometry factor depends on the crack length according to
Y (a) = 1 + 0.1 mm−1 · a. The critical crack length is af = 10 mm.

a) Calculate the fracture toughness KIc from the critical crack length!
b) Check whether unstable crack propagation is to be expected!
c) Check whether crack propagation has to be expected, using equation (10.6)

with the prefactor 2.75×10−5 and a Young’s modulus of E = 70 000 MPa!
d) Estimate whether the component can stay in service if the crack propaga-

tion per cycle da/dN is assumed to be constant!
e) Use equation (10.10) to check whether the machine can stay in service

until the next maintenance interval! Hint: Use∫
dx

(A + Bx)2x
= − 1

A2

(
ln

A + Bx

x
+

Bx

A + Bx

)
.

Exercise 31: Miner’s rule

The life time of the fixing screw of an industrial robot is to be calculated for
the expected load history. In each week, the screw is loaded 10 000 times with
σa = 60 MPa, 5000 times with 100 MPa, 2000 times with 150 MPa, and 200
times with 200 MPa, always at an R ratio of 0.3. Miner’s rule is to be used
for the design. The S-N curve of the material is shown in figure 12.6.

Calculate the life time of the screw in weeks! For how many cycles will the
screw survive? Assume that the loads are distributed evenly over the week!
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Exercise 32: Larson-Miller parameter

The creep properties of a newly developed high-temperature material are to
be investigated experimentally. Several experiments are performed.

a) At a stress σ1, the material fails at a temperature T1 = 940℃ after t1 =
23 hours and at a temperature of T2 = 850℃ after t2 = 1017 hours.
Calculate the Larson-Miller parameter C from equation (11.5)!

b) A component made of this material has to serve for 100 000 hours at a
stress σ2. A creep experiment at this stress and a temperature T3 = 940℃
results in a time to failure of t3 = 173 hours. What is the maximum service
temperature to meet the life time demands?

Exercise 33: Creep deformation

In section 8.2.1, the time-dependent behaviour of polymers was described
using spring-and-dashpot models.

a) Sketch a spring-and-dashpot model suitable to describe creep deformation!
b) Consider a material with Young’s modulus E and the creep law ε̇ = Aσn.

Calculate the time-dependence of the strain in a retardation experiment.
c) Due to its low melting temperature, lead creeps already at ambient tem-

peratures. A thin-walled lead tube fixed at its ends bends under its own
weight in the course of time. Estimate by how much the centre of the tube
is displaced within one year!

The maximum stress in the lead tube is

σ =
%gl2

8d
,

where % = 11.4 g/cm3 is the density of lead, l = 0.8 m is the length of the
tube, and d = 0.03 m is the diameter of the tube. The relation between
the displacement h and the strain ε in the middle of the tube is

h =
εl2

4d
.

The creep law is assumed to be ε̇ = Aσ since diffusion creep is the domi-
nant mechanism. The creep constant A is 4.11× 10−18 Pa−1s−1.

Exercise 34: Relaxation of thermal stresses by creep

A rod made of a nickel-base superalloy is clamped at low stress between two
plates and then heated rapidly from ambient temperature, T1 = 23℃, to a
final temperature T1 = 1000℃ and kept at this temperature for t = 100 s.
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Young’s modulus is 130 000MPa, the coefficient of thermal expansion is
α = 17.5 × 10−6 K−1 (for simplicity, both parameters are assumed to be
temperature-independent). The creep law of the material is ε̇ = Aσn, with
n = 3 and A = 3× 10−12 MPa−3s−1.

a) Calculate the stress in the rod at the end of the holding time!
b) The rod is rapidly cooled down again. At what temperature does it fall

from the clamping plates?
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Solution 1:

a) A unit cell of a face-centred cubic crystal (figure 1.5(a)) has an edge length of
a and comprises 4 atoms (8 atoms on the corners, counting as 1/8 each, and
6 atoms on the side faces, each counted as half an atom). 4 atomic radii are
aligned on the face diagonal of length

√
2 a. Thus, the atomic radius r is given

by 4r =
√

2 a. The total volume of the four atoms is

Vatom = 4 · 4

3
πr3 =

√
2

6
πa3 .

Using the volume of the unit cell, V0 = a3, we find the relative density

fV =
Vatom

V0
= 0.7405 ≈ 74% .

b) The body-centred cubic unit cell (figure 1.5(b)) contains 2 atoms (8 on the
corners, counting 1/8 each, and one in the centre). The space diagonal of length√

3 a contains 4 atomic radii 4r =
√

3 a. Calculating as above, we find fV =

0.6802 ≈ 68%.
c) The hexagonal close-packed unit cell (figure 1.6) contains 6 atoms (12 atoms,

counted 1/6, 2 atoms on the basal planes, counted as half an atom each, and 3
atoms within the cell). The atomic radius is r = a/2. The volume of the atoms
is thus Vatom = πa3.

Calculating the volume of the unit cell is a bit involved. We start by con-
sidering the basal planes: If we draw the length b as in figure 13.1(a), we find
b = a sin 60° or b =

√
3 a/2. The basal plane comprises 6 equilateral triangles

with an area ab/2 =
√

3 a2/4. The middle atomic layer is shifted relative to the
lower layer by 2b/3 as shown in figure 13.1(b). The height can be calculated,
according to figure 13.1(c), as a2 = (c/2)2 +(2b/3)2 or c =

p
8/3 a. The volume

of the unit cell is thus V0 = 6 ·
`√

3 a/2
´
·

`p
8/3 a

´
= 3

√
8 a3/2. The relative

density follows to
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Fig. 13.1. Dimensions in a hexagonal close-packed crystal

fV =
Vatom

V0
=

πa3

3
√

8 a3/2
=

2π

3
√

8
= 0.7405 ≈ 74% .

It would have been much simpler to solve the exercise using the following
argument: The face-centred cubic and the hexagonal close-packed crystal are
close packed with each atom having 12 nearest neighbours. Therefore, the rela-
tive density must be the same in both cases and the result for the face-centred
cubic lattice can be used.

Solution 2:

a) Each monomer has the chemical composition C2H4, resulting in a molar mass
of

mmono = 2× 12.01 g/mol + 4× 1.01 g/mol = 28.06 g/mol .

The molar mass of the whole molecule is thus 2.8× 105 g/mol.
b) The horizontal distance between two carbon atoms on a chain as in figure 1.22

is d = 0.154 nm · cos(90°− 109°/2) = 0.125 nm. The total length of the molecule
is thus L = 2× 104 × 0.125 nm = 2.507 µm.

Solution 3:

a) The interaction force (2.10) must be zero at equilibrium:

− dUA(r)

dr

˛̨̨̨
r0

− dUR(r)

dr

˛̨̨̨
r0

= −1.436

r2
0

eV nm + 9 · 5.86× 10−6

r10
0

eV nm9 = 0 .

r0 =
8

r
5.274× 10−5

1.436
nm8 = 0.279 nm .

b) The binding energy is the energy at the minimum, U(r0). This yields

U(r0) = − 1.436

0.279 nm
eV nm +

5.86× 10−6

(0.279 nm)9
eV nm9 = −4.57 eV .
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c) The molar mass of a NaCl molecule is mmol = 58.4 g/mol. The molecular density
(number of molecules per cubic metre) is thus

nNaCl =
%

mmol
=

2165 kg/m3

0.0584 kg/mol
= 37 071.9mol/m3 .

The number of atoms is twice as large; the lattice constant is therefore (since
the lattice is simple cubic)

a =
1

3
p

2nNaCl

=
1

3
p

74 143.83mol/m3 ·NA

= 0.282 nm .

This result agrees well with the result from subtask a).
d) We start by calculating the spring constant k of the bond between two atoms,

according to section 2.3:

k =
d2U

dr2

˛̨̨
r0

= −2× 1.436

r3
0

eV nm + 90× 5.86× 10−6

r11
0

eV nm9

= 529.20 eV/nm2 = 84.778 J/m2 .

If a force F is applied in the 〈100〉 direction to an area A, each bond is loaded
by a force Fb = Fa2/A. The resulting displacement ∆l per bond is ∆l = Fb/k.
The strain is thus

ε =
∆l

a
=

Fa2

akA
.

Using the definition of stress, σ = F/A, we find Young’s modulus E as

E =
σ

ε
=

F/A

Fa2/akA
=

k

a
=

84.778 J/m2

2.79× 10−10 m
= 304GPa .

The reference area A and the value of the applied force cancel from the equation
as expected.

e) According to equations (2.35) and (2.39), Young’s modulus is

E〈100〉 =
1

S11
=

(C11 − C12)(C11 + 2C12)

C11 + C12
= 43.5GPa ,

The simple estimate has roughly the right order of magnitude, but it is still
way too large. This is mainly due to the fact that the repulsion of diagonally
neighbouring atoms eases the deformation and has been neglected.

Solution 4:

a) Consider a brick-shaped volume with dimensions l1 × l2 × l3, enlarged to a size
(l1 + ∆l1)× (l2 + ∆l2)× (l3 + ∆l3). The ratio of the two volumes is

V1

V0
= 1 +

∆V

V0
=

(l1 + ∆l1)(l2 + ∆l2)(l3 + ∆l3)

l1l2l3
= (1 + ε11)(1 + ε22)(1 + ε33)
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= 1 + ε11 + ε22 + ε33 +����:�1
ε11ε22 +����:�1

ε11ε33 +����:�1
ε22ε33 +�����:�1

ε11ε22ε33 ,

∆V

V0
= ε11 + ε22 + ε33 . (13.1)

The strains can be calculated from (2.33a). Their sum is

ε11 + ε22 + ε33 =
1− 2ν

E

`
σ11 + σ22 + σ33

´
. (13.2)

The sum of the normal stresses equals, according to equation (3.25), three times
the hydrostatic stress or three times the negative hydrostatic pressure: −3∆p =

3σhyd = σ11 + σ22 + σ33. Inserting this and equation (13.1) into (13.2) yields

∆p = − E

3(1− 2ν)
· ∆V

V0
.

Comparing terms with equation (12.1) yields the bulk modulus

K =
E

3(1− 2ν)
. (13.3)

b) In uniaxial tension, the pressure is ∆p = −σ/3. From this we find
ν1 = 0 : K1 = E/3, ∆V1/V0 = σ/E = ε .
ν2 = 1/3 : K2 = E , ∆V2/V0 = σ/(3E) = ε/3.
ν3 = 0.5: K3 = ∞ , ∆V3/V0 = 0 .

c) A positive normal strain results in a positive transversal strain and thus an
increase in the cross section.

Solution 5:

In the xi coordinate system, the state is one of plane strain as sketched in fig-
ure 2.8(a). The strain tensor is

(εij) =

0@ −ε 0 0

0 ε 0

0 0 0

1A . (13.4)

The strain tensor in the xi′ coordinate system, rotated by 45°, can be found using
the transformation matrix

(gi′i) =

√
2

2

0@ 1 1 0

−1 1 0

0 0
√

2

1A (13.5)

and the rule of transformation εi′j′ = gi′i εij gjj′ or (εi′j′) = (gi′i) (εij) (gj′j)
T. It is
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(εi′j′) =

√
2

2

0@ 1 1 0

−1 1 0

0 0
√

2

1A ·

0@ −ε 0 0

0 ε 0

0 0 0

1A ·
√

2

2

0@ 1 −1 0

1 1 0

0 0
√

2

1A
=

0@ 0 ε 0

ε 0 0

0 0 0

1A . (13.6)

Using Hooke’s law in the Voigt matrix notation, we can calculate the stress state
in each coordinate system. We initially assume that the material parameters might
differ in the different systems. In the un-primed system, we find σα = Cαβ εβ , in the
primed system, the stress is σα′ = Cα′β′ εβ′ . This yields

(σα) =

0BBBBBBB@

σ11

σ22

σ33

σ23

σ13

σ12

1CCCCCCCA
=

0BBBBBBB@

C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

1CCCCCCCA

0BBBBBBB@

−ε

ε

0

0

0

0

1CCCCCCCA
= ε

0BBBBBBB@

−(C11 − C12)

C11 − C12

0

0

0

0

1CCCCCCCA
,

(σij) = ε

0@ −(C11 − C12) 0 0

0 C11 − C12 0

0 0 0

1A , (13.7)

(σα′) =

0BBBBBBB@

σ1′1′

σ2′2′

σ3′3′

σ2′3′

σ1′3′

σ1′2′

1CCCCCCCA
=

0BBBBBBB@

C1′1′ C1′2′ C1′2′

C1′2′ C1′1′ C1′2′

C1′2′ C1′2′ C1′1′

C4′4′

C4′4′

C4′4′

1CCCCCCCA

0BBBBBBB@

0

0

0

ε

0

0

1CCCCCCCA
= ε

0BBBBBBB@

0

0

0

0

0

C4′4′

1CCCCCCCA
,

(σi′j′) = 2ε

0@ 0 C4′4′ 0

C4′4′ 0 0

0 0 0

1A . (13.8)

The matrices of coefficients, (σij) and (σi′j′), must represent the same stress state
and thus the same stress tensor σ because we consider the same physical system.
Therefore, a coordinate transformation must get us from one state to the other.
Using the transformation rules σi′j′ = gi′i σij gjj′ , or (σi′j′) = (gi′i) (σij) (gj′j)

T, we
find (σi′j′) from (σij) according to equation (13.7):

(σi′j′) = ε

0@ 0 (C11 − C12) 0

(C11 − C12) 0 0

0 0 0

1A .

Comparing terms with equation (13.8) yields the condition

2C4′4′ = C11 − C12 . (13.9)
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If the material is isotropic, its properties must not change when the frame of reference
is changed. Therefore, we know C1′1′ = C11, C1′2′ = C12 and C4′4′ = C44. This
yields the proposed equation

C44 =
C11 − C12

2
. (13.10)

Solution 6:

a) The stored elastic strain energy W (el) equals the external work done during the
deformation,

R
F (∆l) d(∆l). In both geometries, the cross section is A.

At booth A, we find, using σ = EA · ε:

F (∆l) = AEA
∆l

lA
,

W
(el)
A =

Z ∆lA

0

F (∆l) d(∆l) =
AEA

lA

Z ∆lA

0

∆l d(∆l) =
AEA

`
∆lA

´2

2lA
.

Booth B: Because the material is assumed to be linear elastic, we can integrate
over dF instead of dl:

R
∆l(F ) dF . Using ε = σ/EB yields

∆l(F ) = lB
F

AEB
,

W
(el)
B =

Z FB

0

∆l(F ) dF =
lB

AEB

Z FB

0

F dF =
lB

`
FB

´2

2AEB
.

b) Booth A: W
(el)
A ∝ EA. Increasing EA increases W

(el)
A and vice versa.

Booth B: W
(el)
B ∝ 1/EB. Increasing EB decreases W

(el)
B and vice versa.

Figure 13.2 shows the stored elastic energy as area in the stress-strain dia-
gram. In strain-controlled loading, the rubber band with the larger stiffness
stores more energy, in stress-controlled loading, it stores less energy.

c) The take-off velocity v is reached when all of the elastic energy is converted
to kinetic energy: W (kin) = W (el). The kinetic energy is W (kin) = mv2/2. The
take-off speed is thus v =

p
2W (kin)/m.

Booth A:

vA =

s
2W

(kin)
A

m
=

s
2W

(el)
A

m
=

r
AEA

mlA
∆lA . (13.11)

Booth B:

vB =

s
2W

(kin)
B

m
=

s
2W

(el)
B

m
=

r
lB

mAEB
FB . (13.12)

d) The following quantities cannot be changed: A, m, lA, ∆lA, lB, FB. Young’s mod-
uli EA and EB in equations (13.11) and (13.12) can be changed by exchanging
the rubber bands.
Booth A:



www.manaraa.com

13 Solutions 429

ε

σ

EAEB

(a) Strain-controlled. The stored
energy is larger in the stiffer material

ε

σ

EAEB

(b) Stress-controlled. The stored
energy is smaller in the stiffer material

Fig. 13.2. stored elastic strain energy in the rubber bands in strain- and stress-
controlled loading

v
(new)
A =

r
AEB

mlA
∆lA =

r
A · 2EA

mlA
∆lA =

√
2 · vA .

Booth B:

v
(new)
B =

r
lB

mAEA
FB =

s
lB

mAEB/2
FB =

√
2 · vB .

Conclusion: In strain-controlled loading (booth A), increasing the stiffness in-
creases the elastically stored energy, whereas decreasing the stiffness increases
the elastically stored energy in stress-controlled loading (booth B), see fig-
ure 13.2.

Solution 7:

a) The initial length for the first elongation ∆l1 is l. The strain is

ε1 =
∆l1
l

.

When adding the second elongation ∆l2, we have to relate the strain to the
current length l + ∆l1:

ε2 =
∆l2

l + ∆l1
.

The total nominal strain is the sum of the two contributions:

ε1 + ε2 =
∆l1
l

+
∆l2

l + ∆l1
=

∆l1(l + ∆l1) + ∆l2l

l(l + ∆l1)
=

∆l1l + ∆l21 + ∆l2l

l(l + ∆l1)
.

(13.13)

If we elongate the rod in one step by ∆l1 + ∆l2, the reference length is l:
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Fig. 13.3. Deviation between nominal strains in one and two steps as function of
the step size fractions

ε1+2 =
∆l1 + ∆l2

l
.

The difference between the two total strains is ∆ε:

∆ε = ε1+2 − (ε1 + ε2) =
(∆l1 + ∆l2)(l + ∆l1)

l(l + ∆l1)
− ∆l1l + ∆l21 + ∆l2l

l(l + ∆l1)

=
∆l1∆l2

l(l + ∆l1)
= ε1 ε2 .

b) Figure 13.3 shows the dependence of the strain difference for a rod of length l =

100mm on the division of the total length change ∆l into the two partial steps
∆l1 and ∆l2. The quantity on the abscissa, ε1/ε1+2, is equal to ∆l1/(∆l1 +∆l2).
At ε1/ε1+2 = 0 and ε1/ε1+2 = 1, the deviation vanishes because the total
deformation is done in one step. The maximum difference occurs if about 40%

of the deformation are done in the first step. It can also be seen that the deviation
increases quadratically with the total strain ε1+2.

c) Using the definition of the true strain, equation (3.3), we find for the first step

ϕ1 = ln
l + ∆l1

l
,

and for the second step

ϕ2 = ln
l + ∆l1 + ∆l2

l + ∆l1
.

The sum of the two steps is

ϕ1 + ϕ2 = ln
l + ∆l1

l
+ ln

l + ∆l1 + ∆l2
l + ∆l1

= ln
l + ∆l1 + ∆l2

l
. (13.14)

If we perform the deformation in a single step, the strain is

ϕ1+2 = ln
l + ∆l1 + ∆l2

l
. (13.15)

Comparing equations (13.14) and (13.15), we see that ϕ1+2 = ϕ1 + ϕ2 holds.
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Solution 8:

a) In this case, we find G10 = G0 · (1 + 10 a · z0). The rate of interest is thus
z0 = 0.1 a−1 = 10%/a.

b) Now, we have G1 = (1+z)G0, G2 = (1+z)G1 = (1+z)2G0, . . . , Gn = (1+z)nG0.
This yields z = n

p
Gn/G0 − 1 and z = 10

p
G10/G0 − 1 = 7.2%/a.

Conclusion: If the current deposit is used to calculate the interest, the rate
of interest needed to get the same final amount is smaller than in the other case.
Accordingly, the true strain ϕ is smaller than the nominal strain ε at the same
elongation.

Solution 9:

a) It is easy to find the relation between ξ and x:

xi = ξi ·
li + ∆li

li
= ξi ·

„
1 +

∆li

li

«
.

Using equation (3.4) yields the deformation gradient

Fij =
∂xi(ξ)

∂ξj
=

8<:
“
1 +

∆li

li

”
for i = j,

0 for i 6= j.

Fij thus contains only diagonal entries. Green’s strain tensor G can be calculated
using equation (3.7):

Gij =
1

2
·

8<:
“
1 +

∆li

li

”2

− 1 for i = j,

0 for i 6= j

9=;
=

8<:
∆li

li
+ 1

2

“
∆li

li

”2

for i = j,

0 for i 6= j.
(13.16)

b) If we insert the normal strains εii = ∆li/li into equation (13.16), we find

G =

0@ ε11 + ε2
11/2 0 0

0 ε22 + ε2
22/2 0

0 0 ε33 + ε2
33/2

1A
For small deformations, the terms εii are small and ε2

ii can be neglected. In
this case, Green’s strain tensor G approaches the strain tensor ε. The deviation
increases with increasing deformation.

Solution 10:

a) The principal stresses are the eigenvalues of the stress tensor (calculated without
writing units):
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det

0@ 155− λ 55 0

55 155− λ 0

0 0 −λ

1A = −λ
ˆ
(155− λ)2 − 552˜

= 0 ,

⇒ λ1 = 0, λ2 = 210, λ3 = 100 .

The result is: σI = 210MPa, σII = 100MPa, σIII = 0MPa.
b) σeq,T = σI − σIII = 210MPa > Rp0.2. The material yields.

c) σeq,M =
q

1
2

ˆ
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

˜
= 181.93MPa < Rp0.2.

The material does not yield
d) It is not possible to decide because both yield criteria are only approximately

true.
e) τ = σeq,M/M = 58.7MPa < τF. No significant activation of dislocation move-

ment.
f) The deviator can be calculated from σ′ = σ − 1 σhyd, using σhyd = tr σ/3 =

(155 + 155 + 0)/3MPa = 103.3̄MPa. This results in

σ′ =

0@ 51.6̄ 55 0

55 51.6̄ 0

0 0 −103.3̄

1A MPa .

Solution 11:

The parameter m from equation (3.36) is m = 50MPa/40MPa = 1.25.

a) The hydrostatic stress state is characterised by σ11 = σ22 = σ33 = σhyd and
σ23 = σ13 = σ12 = 0.
Parabolic: According to equation (3.37), we find at yielding

Rp =
m− 1

2m
· 3 σeq,pM,F +

s»
m− 1

2m
3 σeq,pM,F

–2

+ 0

=
m− 1

m
· 3 σeq,pM,F =

3

5
σeq,pM,F .

This results in a ‘hydrostatic yield strength’ of σeq,pM,F = 5/3 ·Rp = 66.7MPa.
Conical: According to equation (3.39), we find at yielding

Rp =
1

2m
· [(m− 1) · 3 σeq,cM,F + 0] =

3

10
σeq,cM,F .

This results in a ‘hydrostatic yield strength’ of σeq,cM,F = 10/3·Rp = 133.3MPa.
b) Parabolic:

σeq,pM =
0.25

2.5
σ11 +

s»
0.25

2.5
σ11

–2

+
8

2.5
σ2

11

=
1

10
σ11 +

r
321

100
σ2

11 = 1.89 σ11 = 1.058 Rp .

The material yields.
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Fig. 13.4. Neuber’s hyperbola

Conical:

σeq,cM =
1

2.5

»
0.25 σ11 + 2.25

q
4σ2

11

–
= 1.9 σ11 = 1.064 Rp .

The material yields.
c) Parabolic:

σeq,pM =
0.25

2.5
(−σ11) +

s»
0.25

2.5
σ11

–2

+
8

2.5
σ2

11 = 1.69 σ11 = 0.947 Rp .

The material does not yield.
Conical:

σeq,cM =
1

2.5

»
0.25 (−σ11) + 2.25 ·

q
4σ2

11

–
= 1.7 σ11 = 0.952 Rp .

The material does not yield.

Solution 12:

a) Reading off from diagram 4.3, we find a stress concentration factor of Kt = 1.67.
b) The nominal stress at the notch root is

σnss =
F

π(d/2)2
= 198.94MPa .

According to equation (4.1), we find σmax = Kt σnss = 332 MPa. σmax is above
Rp and Rm. Thus, the component could not be used.

c) Using equation (4.5) yields

σmax εmax =
σ2

nss

E
K2

t = 1.623MPa .

The corresponding Neuber’s hyperbola is shown in figure 13.4.
d) The values can be read off the diagram: σmax = 210MPa, εmax = 0.008 = 0.8%.
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e) The component can be used because the maximum strain is significantly smaller
than the strain at necking.

Solution 13:

a) Since the stress is defined as force per area, we have to look at the stress over the
width of a lattice constant and have to integrate the stress field in x1 direction
over a distance of one lattice constant. The force is thus

F = aNaCl

Z aNaCl

0

KIc√
2π

1√
r

= aNaCl
KIc√
2π

ˆ
2
√

r
˜aNaCl
0

=
KIc√
2π

· 2a
3/2
NaCl .

b) The force is F = kx if the bond is strained by a distance x. The force at a strain
of aNaCl/10 must, according to the assumption, equal the force from subtask a).
The fracture toughness can thus be calculated as follows:

k aNaCl

10
=

KIc√
2π

· 2a
3/2
NaCl ,

k

10
=

KIc√
2π

· 2a
1/2
NaCl ,

KIc =
k

10

√
2π

2

1

a
1/2
NaCl

= 0.634MPa
√

m .

This value is of the correct order of magnitude for a ceramic crystal.
c) Because we simply used the stress field calculated from continuum mechanics

to find the force at one atom, the calculation is incorrect since there can be
no stresses in between the atomic positions. The calculation could be improved
by using the elastic stress field at some distance from the crack tip and by
calculating the displacements of all atoms inside this region using the force law.
Furthermore, it would be necessary to quantify the fracture strain of a bond
more precisely. Assuming a simple spring force is also a severe approximation
because the potential curve is not parabolic if the displacements are large (see,
for example, figure 2.6). Calculations accounting for all this can yield realistic
values for the fracture toughness of a material. The calculation as presented
here can be accepted as a very coarse approximation that mainly serves to show
why a stress singularity does not imply a force singularity at the position of the
crack tip.

Solution 14:

We start by adding the elastic line and the 95% line to the diagram (figure 13.5).
Reading off the forces yields F5 = 13.5 kN, Fmax = 14.5 kN. F5 is to the left of Fmax,
corresponding to the case from figure 5.16(b), yielding FQ = F5. The condition (5.32)
has to be met: Fmax/FQ = 1.07 ≤ 1.1 (true).

The geometry factor for the initial crack length is f = 9.66. Using equation (5.30)
yields KQ = 23.3MPa

√
m. We finally have to check the inequality (5.33). The right-

hand side is 2.5(KQ/Rp)2 = 5.2mm. All required dimensions (B, a, W − a) fulfil
this condition.
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Fig. 13.5. Determination of the forces F5 and Fmax in the load-displacement dia-
gram

Thus, the fracture toughness is KIc = 23.3MPa
√

m.

Solution 15:

The solution is based on section 5.2.3.

a) Design against yielding: The stress state is uniaxial with σ = pD/(2t). Thus, the
condition σ = pD/(2t) < Rp0.2 must be met: Since σ = 1200MPa < 1420MPa,
there is no yielding.

Design against cleavage fracture: σI < σC: 1200MPa < 2200MPa. Cleavage
fracture is not to be expected.

Design against crack propagation: σI < KIc/
√

πa, where a = 1.5mm is the
maximum half crack length to be expected: 1200MPa < 1311MPa. There will
be no crack propagation.

The tube can be used.
b) Since Rp was stated for uniaxial loading, the result is independent of the yield

criterion because the service load is also uniaxial.1

c) Yielding occurs at a pressure p = 2tRp0.2/D = 14.2MPa.
Cleavage fracture will be observed at a pressure p = 2tσC/D = 22MPa.
From the fracture toughness, the stress can be calculated using σ =

KIc/
√

πa. The resulting failure pressure is p = 2tKIc/(
√

πa D) = 13.1MPa.
Thus, the tube will fail by crack propagation at a pressure p = 13.1MPa if

a crack of length a = 1.5mm is present.
d) The yield strength and the fracture toughness are reached simultaneously at a

value ac from equation (5.28): ac = (90MPa
√

m/1420MPa)2/π = 1.28mm.
e) See figure 13.6.
f) According to equation (5.3), the crack opening is

v0 = 2
2σa

E
= 0.036mm = 36 µm ,

1 If the yield criteria had been assumed equal for pure shear, there would be a
difference in uniaxial tension.
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Fig. 13.6. Failure-Assessment diagram for exercise 15

where the additional factor 2 is necessary because equation (5.3) uses the dis-
placement of one crack surface which is half of the crack opening.

Solution 16:

a) At small displacements a � x, Hooke’s law from equation (2.5) can be used
with shear strain γ = x/a:

τ(x) = G
x

a
. (13.17)

The shear stress is given by (see figure 12.4)

τ(x) = τmax sin
“
2π

x

a

”
for all x between 0 ≤ x ≤ a. For small arguments α � 1, the sine can be
approximated as sin(α) ≈ α. The result is

τ(x) ≈ τmax · 2π
x

a
.

Equalling this with equation (13.17) yields

τmax =
G

2π
, (13.18)

where τmax is equal to the theoretical shear stress τ̃F. In aluminium, with a
shear modulus of G = 26 500MPa, this results in the estimate τ̃F = 4218 MPa.
In reality, pure aluminium has a yield strength of only Rp0.2 ≈ 50MPa, corre-
sponding to a maximum shear stress of τF = 25MPa. The simple estimate is
thus too large by two orders of magnitude. From this, we can conclude that slip
does not occur by shifting layers of atoms simultaneously.

b) The equilibrium position at x = a/2 is unstable because the atoms of one layer
are situated between those of the other layer, resulting in a maximum strain of
the bonds. An infinitesimal displacement from this position would result in the
atoms moving to either x = 0 or x = a. This is due to the fact that the stiffness
C = dτ/dx is negative at this point:
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C =
dτ

dx

˛̨̨̨
x=a/2

= 2πτmax cos

„
2π

a/2

a

«
= 2πτmax cos π = −2πτmax .

Solution 17:

a) A dislocation moving from one side of the crystal to the other causes a slip of
one Burgers vector b. To shear the crystal by a length s, N = s/b = 3.5 × 105

dislocations have to move through the crystal. Because the dislocations are not
all at one side of the crystal initially, they can, on average, cover only half the
length of the crystal, resulting in twice this value, N = 7× 105.

b) The dislocation density is the dislocation length per volume. To completely shear
the crystal over its width, the dislocation has to extend throughout the crystal
and thus have a length of 10mm. The resulting dislocation density is thus

% =
aN

a3
=

N

a2
= 7× 109 m−2 .

Not all of the dislocations can contribute because of their orientation. Assume
that the shear is in the x direction. If we consider screw dislocations, all dis-
locations with a line vector in the y direction can contribute (one third of all
screw dislocations). Of the edge dislocations, only those with line vector in the
y direction can contribute that have the additional half-plane in the z direc-
tion (one sixth of all edge dislocations). As we are interested in an estimate
only, we can assume that about one fifth of all dislocations contribute to the
deformation. This results in a final estimate for the dislocation density of about
3.5× 1010 m−2.

c) If the grain size is d, the dislocations do not move throughout the crystal, but
are limited to one grain because, due to the small amount of deformation, the
stresses can be expected to be too small to allow dislocations to pass grain
boundaries. The number of dislocations thus increases by a factor s/d = 100,
resulting in a dislocation density of % = 3.5× 1012 m−2.

d) The total length of all dislocations is L = %a3 = 3.5× 106 m = 3500 km.

Solution 18:

The energy per length of a dislocation line is T ≈ Gb2/2 according to equation (6.3).
Strictly speaking, this is only valid for a straight segment, but we will see that the
required energy is so large that this is irrelevant. The energy E of a dislocation
loop of length 6b is E = 6Gb3/2 = 1.8 × 10−18 J. The probability to form such a
dislocation loop is P = exp

`
−E/(kT )

´
, resulting in P300 ≈ 1.5 × 10−189 at 300K

and P900 ≈ 1.1× 10−63 at 900K. The thermally activated generation of dislocation
loops is thus practically impossible.

Solution 19:

To calculate the increase in strength, we can use equation (6.20), with the increase
being the difference of the strengthening contribution in both states:
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Table 13.1. Determination of the Weibull modulus

i P̃f,i ln ln
`
1/(1− P̃f,i)

´
σi/MPa ln(σi/MPa)

1 0.125 −2.013 54.60 4.0
2 0.375 −0.755 90.02 4.5
3 0.625 −0.019 4 244.69 5.5
4 0.875 0.732 665.15 6.5

∆σ = kdMGb (
√

%1 −
√

%0) = 230MPa .

Solution 20:

Using the Hall-Petch equation (6.25), the contribution to strengthening is ∆σcoarse =

k/
√

dcoarse in the coarse-grained and ∆σfine = k/
√

dfine in the fine-grained material.
Reducing the grain size strengthens by the difference of these two contributions:

∆σ =
k√
dfine

− k√
dcoarse

.

Solving for the new grain size, we find for ∆σ = 80MPa

dfine =

„
∆σ

k
+

1√
dcoarse

«−2

= 1.48 µm .

Solution 21:

a) The Orowan stress is τ = Gb/2λ according to equation (6.17). The normal
stress σ and the shear stress τ are related by the Taylor factor which takes a
value of M = 3.1 in face-centred cubic metals. This results in

2λ =
GbM

∆Rp0.2
= 39nm .

b) According to equation (6.28), we find

r = 2λ

r
fV

2
= 5.5 nm .

Solution 22:

We start by sorting the data with increasing size and assigning approximate failure
probabilities according to equation (7.14) (see table 13.1). We also enter the quanti-
ties ln ln

`
1/(1− P̃f,i)

´
and ln(σi/MPa) into the table to enable drawing the diagram

in figure 13.7. From this diagram, we can read off the Weibull modulus m = 1 which
equals the slope. The intersection with the axis is −m ln(σ0/MPa) = −5.6, yielding
σ0 = 270MPa.
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Fig. 13.7. Graphical determination of m and σ0 in a diagram analogous to fig-
ure 7.17

Solution 23:

a) The pressure is p = F/A = mg/(LB) = 6.131 25× 10−3 N/mm2.
b) Equation (7.6) yields

1− Pf = exp

»
− V

V0

„
σlimit

σ0

«m–
,

ln(1− Pf) = − V

V0

„
σlimit

σ0

«m

,

σlimit

σ0
=

m

r
−V0

V
ln(1− Pf) . (13.19)

Using V/V0 = 1, we thus find σlimit = 0.541 σ0. Relating this to the pressure,
σlimit = 2pL2/d2

min, we find for the thickness

dmin =

r
2pL2

0.541 σ0
= 15.1mm . (13.20)

c) From equation (13.19), we find, using V1/V0 = LBdmin/Vspec = 12.08, the
new value of the maximum stress σlimit,1 = 0.458 σ0. With the help of equa-
tion (13.20), the thickness is calculated to be dmin,1 = 16.35mm.

This, however, changes the specimen volume V , changing the allowed
stress σlimit from equation (13.19). Using the current thickness value dmin,1 =

16.35mm yields a permitted stress of σlimit,2 = 0.456 σ0. Using again equa-
tion (13.20) results in the new thickness dmin,2 = 16.40mm.

The change from dmin,1 to dmin,2 is rather small, making further iterations
of the procedure unnecessary.

d) Production needs not to be stopped because all of the material volume is maxi-
mally stressed in tension, but only a small part of it in bending. The strength
in a tensile test is thus smaller than in a bending test. Thus, the safety of the
product is increased by this error.

e) d =
p

2pL2/Rp = 11.07mm.
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Solution 24:

a) We want to determine the parameters B∗ and n from equation (7.2). To get a
system of linear equations for the parameters, we write this equation as

tf = B∗σ−n ⇒ ln
`
tf

´
= ln B∗ − n ln σ .

Using σ1 = 140 MPa, tf1 = 375.2 h, σ2 = 150MPa, and tf2 = 94.4 h allows to
write the system of equations:

ln
`
tf1

´
= ln B∗ − n ln σ1 and ln

`
tf2

´
= ln B∗ − n ln σ2 ,

ln
tf1
tf2

= n ln
σ2

σ1
.

The result is n = 20.0 and B∗ = 3.1529×1045 MPa20h. Using the provided value
of the inert strength, we find B = B∗/σn−2

c = 0.3912MPa2h.
Note: Due to the large exponents in this calculation, your results may differ

from those stated here by several percent. The values here result if the exact
values are used.

b) The failure probability can be calculated from equation (7.10), with V/V0 = 1,
m∗ = m/(n − 2) = 1.2222, and t0(σ) = B∗σ−n = 3.1529 × 1045 MPa20h ·
(100MPa)−20 = 314 016 h:

Pf(25 000 h) = 1− exp

"
−

„
tf

t0(σ)

«m∗#

= 1− exp

"
−

„
25 000 h

314 016 h

«1.2222
#

= 4.4% .

The failure probability is larger than the design value 0.5%. The component
cannot be used.

c) The failure probability can be reduced using a proof test.
d) The calculation is analogous to the derivation of equation (7.16):

Gf(tf , σ) =

(
1− exp

"
−

„
tf

t0(σ)

«m∗#)
−


1− exp

»
−

„
σp

σ0

«m–ff
1−


1− exp

»
−

„
σp

σ0

«m–ff
= 1− exp

"
−

„
tf

t0(σ)

«m∗

+

„
σp

σ0

«m
#

. (13.21)

The proof stress can be calculated from equation (13.21):

σp = σ0

"
ln(1−Gf) +

„
tf

t0(σ)

«m∗#1/m
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= 375MPa

"
ln(1− 0.005) +

„
25 000 h

314 016 h

«1.2222
#1/22

.

The result is σp = 324.1MPa.
e) The fraction of scrapped parts is calculated using equation (7.3):

Pf(324.1MPa) = 1− exp

"
−

„
324.1MPa

375MPa

«22
#

= 4.0% .

Solution 25:

a) Because of the parallel connection of the elements, the strain ε is the same in
both of them. The stress σS(t) in the spring and σD(t) in the dashpot element
are σ = σS(t) + σD(t). The strain rate in the dashpot element is thus

dε

dt
=

σD

η
=

σ − Eε

η
.

This first-order differential equation can be solved by separation of variables:

dε

σ − Eε
=

dt

η
,Z

dε

σ − Eε
=

Z
dt

η
,

− 1

E
ln (σ − Eε) =

t

η
+ C ,

where C is a constant of integration. Solving for ε yields

ε =
1

E

»
σ − exp

„
−E

η
t

«
C′

–
.

The constant of integration C′ can be determined by the fact that the strain ε

is zero at time t = 0 because the dashpot element cannot react immediately to
the stress. Thus, we find C′ = σ and

ε =
σ

E

»
1− exp

„
−E

η
t

«–
.

The strain increases with time and approaches a value σ/E because the dashpot
element will have relaxed completely and all of the stress is transferred by the
spring.

b) In a relaxation experiment, the strain is to be increased discontinuously by a
finite value. This causes an infinite stress in the dashpot element in this model.
A relaxation experiment can therefore not be modelled with this approach.

c) The three elements in the three-parameter model are denoted as follows: Ele-
ment 1 is the spring element in series, element 2 is the parallel spring element,
and element 3 is the dashpot element. This yields the following relations for
stresses and strains:
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ε = ε1 + ε2 , ε2 = ε3 , σ = σ1 = σ2 + σ3 ,

ε1 =
σ1

E1
, ε2 =

σ2

E2
, ε̇3 =

σ3

η
.

In general, the strain rate of the dashpot element is

dε3

dt
=

σ1 − σ2

η
=

σ1 − E2ε2

η
.

In a retardation experiment, the stress σ is constant. We thus find

dε3

dt
=

σ − E2ε2

η
,

identical to subtask a). The total strain is thus

ε = ε1 + ε2 =
σ

E1
+

σ

E2

»
1− exp

„
−E

η
t

«–
.

For retardation, adding a spring does not change anything.
If the strain ε is constant, we find, using σ1 = E1ε1 = E1(ε− ε3),

dε3

dt
=

E1(ε− ε3)− E2ε3

η
=

E1ε− (E1 + E2)ε3

η
.

This can again be solved by separating variables:

dε3

E1ε− (E1 + E2)ε3
=

dt

η
,

E1ε− (E1 + E2)ε3 = exp

„
−E1 + E2

η
t

«
C′ .

The constant of integration C′ can be determined as before from ε3(t = 0) = 0,
yielding C′ = E1ε. The result is

ε3 =
E1

E1 + E2
ε

»
1− exp

„
−E1 + E2

η
t

«–
.

The strain in the dashpot element approaches a value of E1/(E1 + E2) · ε at
large times.

d) We can read off the creep modulus Ec and the relaxation modulus Er from the
previous part of the exercise as

Ec =
E1E2

E2 + E1

h
1− exp

“
−E2

η
t
”i ,

Er = E1 −
E2

1

E1 + E2

»
1− exp

„
−E1 + E2

η
t

«–
.

In both cases, the modulus is E1 at t = 0 and E1E2/(E1 + E2) at t = ∞.
Figure 13.8 shows the time-dependence of both moduli. The creep modulus is
always larger than the relaxation modulus.
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Fig. 13.9. Stress and strain in a viscoelastic material under oscillation load

The retardation and relaxation times are the inverse of the prefactor of the
variable t in the exponential function. Thus, they are tc = η/E2 and tr = η/(E1+

E2), respectively. The relaxation time is always smaller than the retardation
time.

Solution 26:

a) The time-dependence is shown in figure 13.9(a).
The parameter δ describes the time-shift between stress and strain. If δ = 0,

stress and strain are in phase, and the material is not viscoelastic; if δ = 90°, the
strain is at its minimum or maximum when the stress is zero. In real materials,
the value of δ depends on the frequency ω. In polymers, δ can take values of a
few degrees.

b) Using the addition theorem sin(a − b) = sin a cos b + cos a sin b and ωt =

arcsin(ε/ε0) (where we have to keep in mind for later that values of the arc
sine are limited to [−π/2, π/2]) we get
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σ = σ0 cos δ sin ωt + σ0 sin δ cos ωt

= σ0 cos δ · sin
“
arcsin

ε

ε0

”
+ σ0 sin δ · cos

“
arcsin

ε

ε0

”
= σ0 cos δ · ε

ε0| {z }
σ‖

+ σ0 sin δ · cos
“
arcsin

ε

ε0

”
| {z }

σ⊥

.
(13.22)

The first term is in phase with the strain, the second is out of phase.
c) The stress-strain diagram is shown in figure 13.9(b). It has to be noted that the

relation between stress and strain is not unique because there are two possible
stress values for any strain. This is due to the fact that the cosine in equa-
tion (13.22) is always positive when arguments in the interval [−π/2 : π/2] are
used. For a full circle ωt, negative values of the cosine may also result. The full
stress-strain diagram results when we replace the +-sign in equation (13.22) by
a ±.

The same result can be achieved if both parts from equation (12.2) are
considered as a parametric function and plotted in a diagram for time values
0 ≤ t ≤ 2π.

d) The energy dissipated in each cycle is the area enclosed by the stress-strain
curve. To determine this area, equation (13.22) can be exploited. Its first term
describes the part of the stress that is in phase with the strain and thus causes
no dissipation. Thus, only the second term has to be considered in calculating
the energy. The enclosed area – and thus the specific work done – is equal to
twice the area above the dashed line in figure 13.9(b). It can be calculated as
follows:

w = 2

Z ε0

−ε0

σ⊥ dε = 2

Z ε0

−ε0

σ0 sin δ · cos
“
arcsin

ε

ε0

”
dε

= σ0 sin δ · ε0

"
ε

ε0

r
1−

“ ε

ε0

”2

+ arcsin
ε

ε0

#ε0

−ε0

= σ0 sin δ · ε0 · π .

This is the area of an ellipse with major and minor axis ε0 and σ0 sin δ, for if
we shear the area vertically to move the diagonal to the ε-axis, it is this ellipse
that results.

Solution 27:

The activation energy can be determined using equation (8.7). If we compare the
strain rates ε̇ at different temperatures T1 and T2 and stresses σ1 and σ2 at identical
values of σ/T , we can divide the strain rates to find

ε̇1

ε̇2
=

exp
“
− Q

kT1

”
exp

“
− Q

kT2

” .
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The unknown activation volume cancels. It could be determined in the same way
as Q. Solving for Q yields

Q = −
k ln ε̇1

ε̇2
1

T1
− 1

T2

.

Looking at the diagram and using σ/T = 0.2, we can read off a strain rate of
2× 10−5 s−1 at T = 21.5℃ and 2× 10−2 s−1 at T = 40℃. If we insert this into the
formula, we find Q ≈ 290 kJ/mol.

Solution 28:

a) Parallel connection:

εm = εf , σm 6= σf .

Serial connection:

εm 6= εf , σm = σf .

b) Parallel connection: The total applied force F can be divided into two parts,
one for the fibre and one for the matrix: F = Ff + Fm. If we call the total cross
section A and the cross section of fibre and matrix Af and Am, respectively, we
find for the stresses:

σA = σfAf + σmAm ,

σ = σf
Af

A
+ σm

Am

A
.

The stress σ is averaged over fibre and matrix and will not occur at any point in
the component. Af/A and Am/A are the area fractions of fibre and matrix and
thus equal the volume fractions ff and fm because the fibres extend throughout
the component. If we insert ff and fm = 1 − ff into the equation, we find the
isostrain rule of mixtures, equation (9.2):

σ = σfff + σm(1− ff) .

Dividing this equation by the strain ε = εf = εm, and taking into account
equation (9.1), we find Young’s modulus (equation (9.3)):

E‖ =
σ

ε
=

σf

εf
ff +

σm

εm
(1− ff) = Efff + Em(1− ff) = Em

»
1 + ff

„
Ef

Em
− 1

«–
.

(13.23)

Serial connection: The total length is the sum of the lengths of fibre and
matrix: l = lf + lm. Since this condition holds even after deformation, we can
also write ∆l = ∆lf + ∆lm. Using the definition of strain ε = ∆l/l or ∆l = εl

separately for the three length changes, we find
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Fig. 13.10. Young’s modulus in a fibre composite for different fibre arrangements

εl = εf lf + εmlm ,

ε = εf
lf
l

+ εm
lm
l

.

Since the fibres are assumed to be plate-shaped, the volume fractions are
ff = lf/l and fm = 1 − ff = lm/l. We thus find the isostress rule of mixtures,
equation (9.5):

ε = εfff + εm(1− ff) .

Applying Hooke’s law to this equation together with the condition (9.4) yields

ε =
σ

Ef
ff +

σ

Em
(1− ff) = σ · Emff + Ef(1− ff)

EfEm
.

If we solve for E = σ/ε, we find Young’s modulus (equation (9.6)):

E⊥ =
Em

1 + ff

“
Em
Ef

− 1
” .

c) Both curves are plotted in figure 13.10.

Solution 29:

a) Young’s modulus can be found using the isostrain rule of mixtures for fibres
parallel to the external load, equation (9.3),

E‖ = Em(1− ff) + Efff = 0.45× 3GPa + 0.55× 350GPa = 194GPa .

b) Because the fibres are long, the considerations from section 9.3.1 apply. We first
have to check whether the fibres or the matrix will fail first. If we assume, in a
reasonable approximation, that both materials are linear-elastic until fracture,
the fracture strains are

εm =
σm

Em
= 0.02 , εf =

σf

Ef
= 0.014 .
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Thus, the fracture strain of the fibre is reached first. The failure stress can be
estimated using equation (9.7),

σ = σfff + σm(1− ff) ,

inserting the stresses at a strain of 0.014. The fibre stress is σf = 4900MPa,
whereas the matrix stress at strain 0.014 is only 42MPa. Altogether, we find a
tensile strength of

4900MPa× 0.55 + 42MPa× 0.45 = 2714MPa .

c) The compressive strength is, according to equation (9.11),

Rc,in phase =

s
ffσm,FEf

3(1− ff)
=

s
0.55× 60MPa× 350 000MPa

3(1− 0.55)
= 2925MPa .

(13.24)

d) We have to check first whether the fibres are larger than the critical length,
lc = dσf/2τi = 0.65mm. The fibres are much longer than this, ensuring an
effective load transfer onto the fibres. However, the strain increases locally near
the fibres by a factor of about two relative to the global strain (see section 9.3.2).
According to subtask b), the fracture strain in the matrix is 2%. Therefore, the
total strain in the structure must not exceed 1%. At this strain, the matrix and
fibre stresses are 30MPa and 3500MPa, respectively. Using the isostrain rule of
mixtures, we find a tensile strength of 1939MPa.

Solution 30:

a) For R = −1, the maximum stress is half of the stress range: σmax = ∆σ/2.
Using equation (5.2), we find

KIc = σmax
√

πaf Y (af) = 17.72MPa
√

m .

b) At the current crack length, we thus find Kmax = 3.08MPa
√

m. Because the
maximum stress intensity factor Kmax is clearly below KIc, the component will
not fail statically.

c) At R = −1, equation (10.6) yields

∆Kth = E · 2.75× 10−5 · 20.31√m = 2.39MPa
√

m .

Since the current range of the stress intensity factor is ∆K = 2Kmax =

6.16MPa
√

m according to subtask b), stable crack propagation must be ex-
pected.

d) The crack growth per cycle at the current crack length can be calculated from
equation (10.8):

da/dN = C∆Kn = 2× 10−12 MPa−2 cycle−1 × (6.16MPa
√

m)2

= 7.6× 10−11 m/cycle = 7.6× 10−8 mm/cycle .
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If the crack-growth rate would stay constant at this value, the critical crack
length would be reached after

Ñf =
af − a0

da/dN
= 1.2× 108

cycles. In this case, the component could be cleared for further use.
e) Equation (10.10) is

Nf =
1

C

„
1

∆σ
√

π

«n Z af

a0

1`
Y
√

a
´n da .

Inserting n = 2, Y (a) = 1 + ba, and b = 0.1mm−1 yields

Nf =
1

C∆σ2π

Z af

a0

1

(1 + ba)2 a
da .

Using the integral formula provided and setting A = 1 and B = b, we find

Nf = − 1

C∆σ2π

»
ln

1 + ba

a
+

ba

1 + ba

–af

a0

= − 1

C∆σ2π

»
ln

a0(1 + baf)

af(1 + ba0)
+

baf

1 + baf
− ba0

1 + ba0

–
.

Putting in numerical values yields the final result

Nf = − 1

2× 10−5 · π

»
ln

2

11
+

1

2
− 0.1

1.1

–
= 20 621 .

The component can be cleared until the next service interval because the number
of cycles to failure is significantly larger than the interval time.

Solution 31:

a) We start by reading off the number of cycles to failure from the S-N diagram:

σa,1 = 60MPa ⇒ Nf,1 = ∞ ,

σa,2 = 100MPa ⇒ Nf,2 = 1500 000 ,

σa,3 = 150MPa ⇒ Nf,3 = 45 000 ,

σa,4 = 200MPa ⇒ Nf,4 = 4000 .

We can use this to calculate the damage contributions:

D1 =
n1

Nf,1
=

10 000

∞ = 0 ,

D2 =
n2

Nf,2
=

5000

1 500 000
= 3.33× 10−3 ,

D3 =
n3

Nf,3
=

2000

45 000
= 4.44× 10−2 ,
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D4 =
n4

Nf,4
=

200

4000
= 5.00× 10−2 .

The total damage in a week is thus Dweek =
P4

i=1 Di = 9.77 × 10−2. Fracture
of the component is to be expected after n weeks when a damage value of
D = n ·Dweek = 1 has been reached:

n = D−1
week = 10.23 .

The number of cycles per week is 17 200; 10.23 weeks thus correspond to about
176 000 cycles.

Solution 32:

a) We use equation (11.5) and solve for the unknown P and C at the two data
points T1, t1 and T2, t2:

P =
ln(t1/h)− ln(t2/h)

1/T1 − 1/T2
= 57.4× 103 K ,

C =
P

T1
− ln

t1
h

= 44.1 .

b) From the known stress value σ2, we can determine the Larson-Miller parame-
ter P2 at this stress:

P2 = T3

„
ln

t3
h

+ C

«
= 59.7× 103 K .

The same parameter value is reached at a service time of t4 = 100 000 hours at
a temperature

T3 =
P2

ln(t4/h) + C
= 1075K .

Solution 33:

a) Because the deformation is viscoplastic, but not viscoelastic, a spring and a
dashpot model have to be connected in series.

b) At constant stress and time t, the creep strain is εc = ε̇t. The total strain is
thus

ε = Aσnt + Eσ .

c) Since we need an approximation only, we can use the stress and strain values
in the middle of the tube. The elastic part of bending is negligible, so we can
write ε = ε̇t because the strain rate is constant at constant stress, We thus find

h =
εl2

4d
=

ε̇l2t

4d
=

Aσl2t

4d
=

A%gl4t

32d2
= 2× 10−4 m .

In each year, the middle of the tube is displaced by 0.2mm.
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Solution 34:

a) Heating causes thermal strains εth in the rod which are compensated for by
elastic strains εel because of the clamping. In the course of time, the stress
caused by the elastic strains is relaxed by a creep strain εc. We can write

ε = εth + εel + εc = 0 .

The thermal strain is εth = α∆T . We start by calculating the stress in the
component:

σ = Eεel = E(−α∆T − εc) .

Its time-dependence can be found by differentiating, noting that the first term
is constant:

σ̇ = −E ε̇c = −EAσn .

This differential equation can be solved by separating variables (see exercise 25):

dσ

−AEσn
= dt ,

1

−n + 1
σ−n+1 = −AEt + C ,

σn−1 =
1

1− n
· 1

−AEt + C
,

where C is a constant of integration yet to be determined.
For the case of interest, n = 3, this yields

σ2 =
1

1− 3
· 1

−AEt + C
=

1

2(AEt− C)
. (13.25)

Because the stress is negative (the rod is compressed), we have to use the nega-
tive sign when taking the square root on the right-hand side:

σ = − 1p
2(AEt− C)

.

The constant of integration can be found by using the condition σ0 = −Eα∆T =

−2223MPa at time t = 0 in equation (13.25):

C = − 1

2σ2
0

= − 1

2E2α2∆T 2
= −1.01× 10−7 MPa−2 .

After 100 s, the stress is only σe = −113MPa.
b) The elastic strain at the end of holding time is only εe = σe/E = −8.70× 10−4.

This strain reduces to zero at a temperature difference of ∆T = εe/α = −49.7K.
The rod will fall from the clamping at a temperature of about 950℃.
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Using tensors

In this chapter, we discuss the basics of how to calculate with tensors. For
a more detailed study, the reader is referred to the technical literature e. g.,
Holzapfel [67].

A.1 Introduction

In general, a tensor is a physical quantity that is associated with coordinates.
Although its numerical representation may change when switching to another
reference or coordinate system, the tensor itself remains unchanged. As an
example, consider the vector a in figure A.1. To state the value of the vector,
a single number is not sufficient. Instead, its components have to be stated
in a coordinate system. Usually, this is done by writing the coordinate values
as a column vector. In the x1-x2 coordinate system shown in the figure, the
vector’s representation is

(ai) =
(

1
2

)
.

If we use the x1′ -x2′ coordinate system, rotated by 45°, the components are

(ai′) =
(

3
√

2/2√
2/2

)
.

The components are not the same in both systems, but the vector a itself is
nevertheless the same as can be seen in figure A.1.

A.2 The order of a tensor

Tensors can be classified by their order, sometimes also called ‘rank’. As a first
example, we consider again a vector. As already explained, its components are
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45°

x1

x1'

x2

x2'
a

Fig. A.1. Vector a in two different coordinate systems

usually written one below the other, resulting in a component matrix that is
a (3 × 1) matrix in three-dimensional space. It is thus one-dimensional, and
the tensor is a tensor of first order. The components of the matrix can be
characterised by a single index.

In a scalar, which is coordinate-independent, the component matrix is a
single number. Since a scalar thus has dimension zero, it is a tensor of zeroth
order. Using an index is thus not necessary.

If we now move on to a quantity with components written as a (3 × 3)
matrix, we get a tensor of second order. In this case, we need two indices to
specify a component of the tensor. One example for a second-order tensor is
the stress tensor σ.

Tensors of second order can be represented by a matrix in a specified co-
ordinate system. In general, a matrix is simply a rectangular arrangement of
numbers. Arbitrary matrices do not necessarily share the important tensor
property of invariance: If a coordinate transformation is done, a tensor’s com-
ponents may change, but the tensor itself does not. Thus, many quantities
that are usually called ‘matrices’ should better be denoted as second-order
tensors.

A third-order tensor is represented by a ‘coordinate cube’ with 3×3×3 =
27 components. This scheme can be extended to arbitrarily high orders. A
fourth-order tensor, having 34 = 81 components, cannot be imagined geo-
metrically. Nevertheless, it is of great importance in material science (see
section 2.4.2).

To summarise, it can be said that the order of a tensor specifies the dimen-
sion of the ‘hypercube’ of edge length three that contains the components in
a certain coordinate system. In three-dimensional space, a tensor of order m
has 3m components.

A.3 Tensor notations

There are different ways to write down tensors and their components, whose
usefulness depends on the context. If we talk about the tensor itself, inde-
pendent of a coordinate system, we use the symbolic notation. Different ty-
pographical styles can be found in the literature. In this book, a first-order
tensor is underscored once (a, b, . . . ), a second-order tensor twice (and usu-
ally denoted with a capital letter, A, B, . . . ). Higher-order tensors get a tilde
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and the value of the order below (A∼3 , B∼4
, . . . ). Other typographic conventions

frequently used elsewhere are bold letters (a =̂ a, A =̂ A) or arrows (a =̂ ~a,

A =̂ ~~A =̂
↔
A).

If we want to specify a component of a tensor in a certain coordinate
system, we use the index notation. Each tensor order requires its own index.
Usually, lowercase letters are used as indices, starting with i (ai, Aij , Cijkl).
Algebraic rules are frequently written down in index notation. Although the
components themselves depend on the coordinate system, the rules are never-
theless valid in all systems.

Everywhere in this book, we use a right-handed Cartesian coordinate sys-
tem with perpendicular coordinate axes and unit vectors of length 1. If this
is not done, the notation becomes much more cumbersome. Nevertheless, this
step has to be done sometimes e. g., when dealing with large deformations (see
section 3.1).

If several coordinate systems are used, they are distinguished by adding
primes to the indices. Thus, a representation in the x1-x2-x3 coordinate system
may be written as ai, Aij , and Cijkl, changing to ai′ , Ai′j′ , and Ci′j′k′l′ in the
x1′ -x2′ -x3′ coordinate system. It is important to add the prime to each index
because tensors might be written using indices mixed from different systems
e. g., Aij′ or Ai′j .

If all components of a tensor are to be described, this is done by adding
parentheses to the tensor written in index notation, for example, (ai), (Aij),
(Cijkl). Implicitly, it is assumed that each index runs from 1 to 3. In second-
order tensors, the first index denotes the row and the second index denotes
the column of the component in the matrix notation. The components of the
tensor

(Aij) =

 1 2 3
4 5 6
7 8 9


are thus A11 = 1, A12 = 2, A13 = 3, A21 = 4, A22 = 5, A23 = 6, A31 = 7,
A32 = 8, A33 = 9. Using this parenthesis notation, the connection to the
symbolic notation can easily be made: a =̂ (ai), A =̂ (Aij).

A.4 Tensor operations and Einstein summation
convention

One of the most important tensor operations is the product. We can write the
so-called (single1) contraction of two tensors as

C = A ·B = A B .

1 We will see below that there is also a double contraction.
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The contraction of tensors is sometimes also referred to as their scalar product,
inner product, or dot product. The resulting components of C can be written
as (using the rule ‘column vector times row vector’)

Cij =
3∑

k=1

Aik Bkj . (A.1)

This equation holds for all 9 components of the tensor Cij . We need not specify
the range of the indices i = 1 . . . 3, j = 1 . . . 3 because they are always fixed
by the space dimension. To further ease the notation, even the sum sign itself
can be omitted, simplifying the equation to

Cij = Aik Bkj . (A.2)

This notation is the so-called Einstein summation convention, stating that
each index that occurs twice in an expression is summed over (with a range
from 1 to 3). This index is called summation index. All other indices are called
free indices. Thus, we can write

c = ai bi =
3∑

i=1

ai bi ,

Cik = Aij Bjk =
3∑

j=1

Aij Bjk .

The summation convention is still used even if the double index occurs within
the same tensor:

Aii =
3∑

i=1

Aii = A11 + A22 + A33 .

In the unusual case that a double index is not to be summed over, the indices
are underscored: Aii. In this case, we really mean only one of the components,
A11, A22, or A33.

Because a tensor product is a scalar quantity in index notation, the com-
mutative law can be used within the sums:

Cij = Aik Bkj = Bkj Aik .

If we want to re-write this to calculate the components of C, the same indices
have to be next to each other as shown in the left-hand part. The rule ‘row
times column’ can be used only in this case. Therefore, the contraction itself
is not commutative:

C = A B 6= B A .
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If there are several double indices in a product, it is a multiple contraction.
In this case, all summation indices are summed over, for example

c = Aij Bji =
3∑

i=1

3∑
j=1

Aij Bji .

In the symbolic notation, a multiple contraction is denoted by several dots, as
many as there are summation indices:

c = Aij Bji = A ·· B . (A.3)

In elasticity theory (section 2.4.2) , Hooke’s law uses a double contraction
between the elasticity tensor of order four and the strain tensor of order two:

σ = C∼4
·· ε

or, in index notation,

σij = Cijkl εkl .

In this case, it doesn’t matter that the indices of the strain tensor are in the
wrong sequency because ε is symmetric i. e., εkl = εlk.

The number of indices in the result of a contraction of tensors of arbitrary
order is equal to the number of indices in the contraction that are not doubled,
the free indices. Here are a few examples, whose symbolic notation is, in some
cases, explained later:

ai = Aij bj , a = A · b ,

ai = bj Aji , a = bT ·A ,

c = ai bi , c = aT · b = a · b ,

a = Aij Bjk Cki , a = tr
(
ABC

)
,

Aijk = Bijkl cl , A∼3
= B∼4

· c ,

Aijkl = Bijkm Cml , A∼4
= B∼4

· C ,

Aij = Bijkl Clk , A = B∼4
·· C .

The result of a calculation must not depend on the coordinate system.
Therefore, the result of a tensor operation must in itself be a tensor (of the
appropriate order). All rules in this section fulfil this condition. A product
definition of the form ci = aibi, directly multiplying the components, is not
physically meaningful because the value of (ci) would depend on the coordi-
nate system.
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A.5 Coordinate transformations

As already stated at the beginning of this chapter, a coordinate transformation
does not change a tensor, but only its components. Thus, for the tensor itself,
we can write A(xi) = A(xi′ ) (with the superscript denoting the coordinate
system), but for the components, we usually find Aij 6= Ai′j′ . To transform
from one coordinate system to another, we have to change the component
matrix accordingly. The relation between the representation in the old and
the new coordinate system can be stated using a matrix, the transformation
matrix (gi′i). Each index is multiplied with this matrix. It has to be noted
that i and i′ are different and not to be summed over. A first-order tensor
(vector) is transformed like this:

ai′ = gi′i ai , (A.4)

a second-order tensor like this:

Ai′j′ = gi′i gj′j Aij . (A.5)

To re-write this transformation in the symbolic notation, we have to ensure
that identical indices are next to each other. Thus, we have to exchange two
indices of the matrix, a matrix operation known as transposing and denoted
by a superscript ‘T’:

AT
ij = Aji .

Thus, the transformation rule

(Ai′j′) = (gi′i) (Aij) (gj′j)T

follows. The components gi′i of the transformation matrix g = (gi′i) can be

calculated from the basis vectors g(i) and g(i′) of the two coordinate systems.
Each of its components is determined by the contraction of the basis vectors:

gi′i = g(i′) · g(i) . (A.6)

All basis vectors have to be written in the same coordinate system.
This can be explained most easily using an example. We again consider the

two-dimensional system from section A.1. The basis vectors of the un-primed
coordinate system (see figure A.1) are

g(1) =
(

1
0

)
and g(2) =

(
0
1

)
,

the basis vectors of the primed system, written in the un-primed system, are

g(1′) =
( √

2/2√
2/2

)
and g(2′) =

(
−
√

2/2√
2/2

)
.
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Using equation (A.6), we can calculate the transformation matrix

(gi′i) =
( √

2/2
√

2/2
−
√

2/2
√

2/2

)
.

If we perform the coordinate transformation of a, (ai) =
(

1 2
)T, we find

(ai′) = (gi′i) (ai) =
( √

2/2
√

2/2
−
√

2/2
√

2/2

) (
1
2

)
=

(
3
√

2/2√
2/2

)
.

A.6 Important constants and tensor operations

In this section, some important rules, conventions, and constants are sum-
marised.

The Kronecker delta δij represents a tensor with invariant components
that do not change in any coordinate rotation. It is defined as

δij =

{
1 for i = j,
0 for i 6= j.

(A.7)

Written in the component notation, the Kronecker delta is nothing but the
unit tensor:

(δij) = 1 =

 1 0 0
0 1 0
0 0 1

 .

A tensor of any order can be transposed by reverting the sequence of the
indices:

(Cijkl)T = (Clkji) .

In a tensor of second order, this means exchanging the rows and columns.
The trace of a tensor of second order is the sum of its diagonal elements:

trA = Aii = A11 + A22 + A33 . (A.8)

The determinant det A of a tensor of second order is the determinant of
its matrix representation. In three dimensions, it is

detA = −A11A22A33 + A12A23A31 + A13A21A32

−A11A23A32 −A12A21A33 −A13A22A31 .

The positive terms are formed by the components on the diagonals that point
downwards and to the right, the negative by those pointing upwards and to
the right.2

2 This simple rule is only valid in three dimensions.
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A.7 Invariants

Each tensor representation is characterised by some properties that are not
changed by a coordinate transformation. The length of a vector, for example,
is not changed by a coordinate transformation. It can be computed by the
contraction of the vector with itself:

|a|2 = a2
1 + a2

2 + a2
3 = a2

1′ + a2
2′ + a2

3′ ,

or, in index notation,

|a|2 = ai ai = ai′ ai′ . (A.9)

Since |a| is defined by a contraction, it does not change during a coordinate
transformation. The length of a vector is thus called an invariant. If we choose
a special xi′′ coordinate system where the vector representation is

(ai′′) =
(
|a| 0 0

)T
,

the vector is completely specified by stating its length and the coordinate
system.

Like vectors, tensors of any order possess invariants, quantities that do not
change during a coordinate transformation. A second-order tensor has three
invariants, called its eigenvalues (from the German word ‘eigen’ meaning ‘own,
peculiar, particular’) λ(k). For a tensor (Aij), they can be calculated from the
characteristic equation(

Aij − δijλ
(k)

)
v
(k)
j = 0 (A.10)

or (
A− 1λ(k)

)
v(k) = 0 ,

where the trivial solution v
(k)
j = 0 is ignored. This equation always has three

(not necessarily distinct) solutions λ(k) with the associated eigenvectors v(k).
In general, the eigenvalues and -vectors calculated this way are complex and
thus cannot be interpreted physically.

In the common case of a symmetric tensor, fulfilling Aij = Aji, the eigen-
values are real numbers and the eigenvectors are perpendicular to each other.
This, for example, is the case in stress or strain states in a classical continuum.
The eigenvalues in this case are called principal stresses and principal strains,
respectively; the eigenvectors are the principal directions or axes.

Similar to a vector, a symmetric second-order tensor can be completely
characterised by stating its eigenvalues and -vectors. To do so, we form a
new xi′′ coordinate system of the eigenvectors, normalised to length 1. In this
system, the tensor is diagonal:
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gi′′ = v(i′′) ,

(Ai′′j′′) = δi′′j′′ λ
(i′′) =

 λ(1) 0 0
0 λ(2) 0
0 0 λ(3)

 .

In the representation using the principal axes, the component matrix contains
only diagonal elements.

There is a special set of invariants, the principal invariants Jk, that can
be formed from the eigenvalues:

J1 = λ(1) + λ(2) + λ(3) ,

J2 = −λ(1)λ(2) − λ(1)λ(3) − λ(2)λ(3) ,

J3 = λ(1)λ(2)λ(3) .

Written for the tensor itself, they can be calculated as follows:

J1 = Aii = tr A ,

J2 =
1
2

[Aij Aji −Aii Ajj ] =
1
2

[
tr

(
A AT

)
−

(
trA

)2
]

,

J3 = det(Aij) = det A .

These principal invariants are important in the context of yielding of materials
and are used in section 3.3.1.

A.8 Derivations of tensor fields

Physical quantities are frequently not defined by a single tensor, but by as-
signing a tensor to each point in space, thus defining a field. Examples are
a temperature field (a scalar field), where a temperature is specified at each
point in space, a velocity field in a flowing fluid (a vector field), where the flow
direction and speed are stated at each point, or the stress field in a material
(a tensor field of second order), assigning a value of the stress tensor to each
point.

Because the value of the field may differ at different points in space, fields
can be derived in the different spatial directions. The derivative of a scalar
field f(x) with respect to x is a vector, calculated by the rule

∂f(x)
∂x

=

 ∂f(x)/∂x1

∂f(x)/∂x2

∂f(x)/∂x3

 .

Each component states how the scalar field changes in the respective spatial
direction. This vector field is called the gradient of f .
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The gradient of a vector field v(x) can be calculated in a similar way. It
states how the vector field changes in each spatial direction and is thus a
tensor field of second order. The rule to calculate this gradient can be most
easily written in component notation:(

∂v(x)
∂x

)
ij

=
∂vj

∂xi
.

It is important to note that the first index of the gradient, i, is in the de-
nominator, not in the numerator of the right-hand side. In the same way,
higher-order tensors can be derived with respect to a vector, always using the
first index from the denominator.

Occasionally, tensor fields have to be derived with respect to scalar quan-
tities. To do so, each component of the field is simply derived separately, for
example

dv(α)
dα

=
(

dv1(α)
dα

dv2(α)
dα

dv3(α)
dα

)T

.

The order of the tensor remains unchanged in this operation.
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Miller and Miller-Bravais indices

In many cases, it is necessary to specify directions and planes in a crystal
lattice. It is most sensible to do so using a crystallographic coordinate system,
with axes parallel to the edges of the chosen unit cell. All parallel directions
and planes in a crystal are equivalent, rendering it unnecessary to state the
origin of the direction vector or plane.

B.1 Miller indices

For specifying directions and planes in a crystal, the origin of the crystallo-
graphic coordinate system is positioned in a lattice point, and the axes are
scaled so that the length of every edge of the unit cell is one. Thus, for non-
cubic lattice types, this coordinate system is non-Cartesian.

Using the so-called Miller indices, a direction is specified by a straight
line through the origin of the coordinate system. The coordinates describing
the line are called the indices and written with square brackets: [hkl]. They
result from the intersection of the line with the nearest lattice point e. g.,
[112] in figure B.1(a). If negative values occur, they are denoted by a bar
on top of the coordinate, for example [110]. If we do not want to specify
a certain direction, but all cristallographically equivalent directions, we use
indices in angle brackets: 〈hkl〉. Cristallographically equivalent directions are
those that can be transformed into each other by using a crystal symmetry.
In a cubic crystal, for example, all space diagonals ([111], [111], [111], [111])
are equivalent.

A plane is also specified by three numbers. They are determined in the
following way: Choose the origin of the coordinate at any point not in the
plane considered. Determine the intersections m, n, and p of the plane with
the coordinate axes as shown in figure B.1(b) (here: m = 1, n = 1, p = 2). If
the plane is parallel to one of the axes, the intersection is assumed to occur at
infinity. We now calculate the reciprocal values of the intersections: h̃ = m−1,
k̃ = n−1, l̃ = p−1 (here: h̃ = 1, k̃ = 1, l̃ = 0.5). Next, we form the smallest
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(a) For a direction
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(221)
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(b) For a plane

Fig. B.1. Determination of Miller indices

h

k

i

l

Fig. B.2. Coordinate system used for Miller-
Bravais indices

triple consisting of integers, h : k : l, with the same ratios as h̃ : k̃ : l̃. This
triple characterises the plane and is written in parentheses: (hkl), for example
(221). If the set of all equivalent planes is to be specified, curly braces are
used: {hkl}. In the case of a cubic lattice, the indices of a plane specify its
normal vector.

B.2 Miller-Bravais indices

In hexagonal crystals, where the base plane exhibits a 120° symmetry, the
Miller-Bravais system is used to specify planes and directions, using a coordi-
nate system with four axes: Three of these, with angles of 120° between them,
lie in the base plane and are equivalent, the fourth is perpendicular to the base
plane: [hkil] (figure B.2). In this way, the symmetry of the crystal is reflected
in the indices. The first three indices obey the additional constraint

h + k + i = 0 . (B.1)
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Apart from this peculiar way of defining the coordinate system, the calculation
of the indices of directions and planes is the same as for the Miller indices.
However, the normal vector of a plane does not correspond to the plane’s
indices.
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A crash course in thermodynamics

In this appendix, we will explain two important thermodynamic concepts
needed in this book in different places: The first concept is thermal activation
of processes, the second the concept of free energy. A detailed discussion of
thermodynamics can be found, for example, in Reif [116].

C.1 Thermal activation

We are looking for the probability that a process needing an energy ∆E occurs
in a certain system. The system may take this energy from its stored thermal
energy. If the temperature of the system is above absolute zero, its components
(for example, the atoms it consists of) are in permanent, irregular motion, the
so-called Brownian motion. Slightly simplified, we can consider the thermal
activation of a process as being caused by these random movements of the
atoms acting together and enabling the process. The probability for such an
event will become the larger, the higher the temperature.

To understand thermal activation in greater detail, we need one basic
principle of thermodynamics. If a system can exist in a number of different
states Z1, Z2, . . . with energies E1, E2, . . . and if it is in thermal equilibrium,
Boltzmann’s law states that the probability P (Zi) to find the system in state
Zi is given by

P (Zi) ∝ exp
(
− Ei

kT

)
. (C.1)

Here T is the system temperature and k is Boltzmann’s constant (k = 1.38×
10−23 J/K). The constant of proportionality in the equation can be calculated
from the fact that the sum over all probabilities must be 1.

From this law, the probability that the system changes its state by thermal
activation to a state with an energy that is larger by ∆E is

P (∆E) ∝ exp
(
−∆E

kT

)
. (C.2)
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As an example, we can estimate the density of vacancies in a metallic crys-
tal. If a vacancy is formed, all atoms adjacent to the vacancy thus possess
unsaturated bonds, thus increasing the energy. A typical value for the activa-
tion energy required for this process is ∆E ≈ 10−19 J. If we put this number
into equation (C.2),1 we can calculate the probability of a vacancy being at
a certain lattice site as 3 × 10−12 at 0℃ and as 10−4 at 500℃. Due to the
large number of atoms in a crystal, these probabilities also correspond to the
vacancy density. As can be seen, the number of vacancies strongly increases
with temperature.

Chemists frequently use a different form of Boltzmann’s law, replacing
Boltzmann’s constant with the so-called gas constant R = 8.314 J/mol K. Us-
ing this, the energy in equations (C.1) and (C.2) has to be given per mole. The
formula is then to be interpreted as giving the probability that the process
of interest does not happen only once, but 6.022× 1023 times. The activation
energy in the example above then takes a value of 60 kJ/mol.

C.2 Free energy and free enthalpy

All of thermodynamics is based on the following two laws:

• First law of thermodynamics:
The energy U of a closed system is constant.

• Second law of thermodynamics:
The entropy S of a closed system takes its maximum value in thermal
equilibrium.

A closed system in this context is a system with constant volume that can
exchange neither heat nor particles with its environment. The statement of
the first law is nothing but the law of the conservation of energy.

To understand the second law, we need to think about the meaning of en-
tropy. The entropy of a system is a measure of the probability that the system
is in a certain macroscopic state. In a closed system, in which the energy is
constant, all microscopic states are equally probable according to Boltzmann’s
law. If we observe the system macroscopically, we will find that state most of-
ten that can be obtained by the largest number of distinct microscopic states.
Therefore, it is highly improbable that all gas molecules inside a container will
gather in one corner, leaving a vacuum everywhere else. The process is not
impossible, but there are only a very small number of possibilities to arrange
the gas molecules in the corner, compared to the number of possibilities to
distribute them evenly over the whole volume. Simplifying, it can be said that
1 In this calculation we assume that each lattice site can exist in one of two states,

either occupied with an atom or vacant. As the probability for a vacancy is small,
the probability of the site being occupied is close to one. The proportionality
constant in equation (C.2) can therefore be set to 1 in very good approximation.
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the entropy of a system is a measure of its disorder because an ordered state
can only be created in a comparably small number of ways.

These considerations were made for a closed system. In practice, we usually
have to deal with systems in contact with their environment. According to the
previous section, the probability for a system to be in a certain state Zi in
thermal equilibrium at a temperature T is given by equation (C.1). The most
probable state is therefore the state with the lowest energy, and the higher
the energy of a state, the lower is the probability to find the system in this
state.

This statement seems to contradict every-day experience: If we consider
again the example of the gas molecules in a container, now at a fixed
temperature, it seems to imply that all gas molecules should lie at rest
on the floor of the container because this would minimise their potential
and kinetic energy. This, however, is not observed.

This seeming contradiction can be resolved by considering the num-
ber of different states the gas molecules can be in to obtain a certain
macroscopic state. There are only a small number of possibilities to
produce the state of lowest energy described above, but a very large
number of configurations in which the gas molecules are irregularly dis-
tributed everywhere in the container. For this reason we will almost
certainly observe one of the irregular configurations.

A simple example can serve to illustrate the distinction: A die is
loaded so that it shows the number 6 with a probability of 25%, each
other number with a probability of only 15%. If we throw the die ten
times, the probability to throw ten sixes is larger than the probability
of any other exactly specified sequence of numbers. Nevertheless, the
probability for this event is only (1/4)10 ≈ 10−6, for there is only one
possibility to get ten sixes, but, for example, already 50 ways to throw
nine sixes together with another number.

If we consider a system S held at a certain temperature by bringing it in
contact with a heat bath W, the two can exchange energy. The entropy is
maximised for the complete system i. e., for the system S and the heat bath
W together. In this case, the entropy of S itself is not necessarily maximised
because the complete system may increase its entropy by a process that dimin-
ishes the entropy of S but increases the entropy of W by a greater amount.

To describe the system S, we introduce a new quantity, the free energy F .
It is defined as

F = U − TS , (C.3)

where U is the internal energy of the system S and S is its entropy. F is
minimised when the system is in contact with a heat bath and has a fixed
volume.2

2 F is not maximised because the entropy enters with a minus sign.
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If the system can also change its volume, being held under constant pres-
sure p,3 it can also change its inner energy by increasing or decreasing its
volume V against the pressure. In this case, the free enthalpy or Gibb’s en-
ergy G takes the place of F :

G = U − TS + pV . (C.4)

In a system at constant temperature and pressure, the free enthalpy is min-
imised. If we are interested in whether a certain process will take place under
these conditions, we have to look at changes in free enthalpy: If it decreases,
the process can take place. One example for this is the investigation of nu-
cleation in section 6.4.4. In solids, the distinction between free energy and
free enthalpy is usually unnecessary because the volume change on changes in
pressure is small. 4

C.3 Phase transformations and phase diagrams

As explained in the previous section, a system with constant volume in con-
tact with a heat bath (i. e., at constant temperature) minimises its free en-
ergy. At low temperatures, the influence of the entropy is small according to
equation (C.3) so that the system tends to minimises its inner energy. With
increasing temperature, the entropy becomes more and more important, and
the system will not be in the state of lowest energy. This temperature depen-
dence of the state is the reason for the occurrence of phase transformations
as will be explained in the following.

As an example, consider a metal: At low temperatures, it is crystalline
because this arrangement minimises the energy by ensuring strong bonds be-
tween the atoms (see section 1.2). The entropy of the crystal, however, is small
due to its long-range order, for the positions of all atoms in the crystal are
(almost) fixed. In the liquid state, on the other hand, the metal atoms are
more weakly bound, resulting in a higher inner energy. The entropy is larger,
however, because there is no long-range order and the atoms can move about
freely.

Figure C.1 shows curves of the free energy for the liquid and solid state
of a material. According to equation (C.3), both free energies depend linearly
on temperature5 so that the curves intersect at a certain temperature value.
Below this value, the crystalline state is the state of lowest free energy, above
this temperature, the liquid state is favoured. If we heat the system beyond
3 The pressure p is the negative hydrostatic stress σhyd and is thus negative under

tensile stresses.
4 One counter-example is the transformation toughening of ceramics discussed in

section 7.5.4.
5 Here we make the simplifying assumption that neither the internal energy nor

the entropy themselves are temperature-dependent.
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Fig. C.1. Free energy in the liquid and
solid state as function of the tempera-
ture

this temperature, a phase transformation between the solid and the liquid
state will take place. This temperature is thus the melting temperature.

In general, a phase transformation does not occur exactly at the transfor-
mation temperature. Directly above the melting temperature, the reduction in
free energy that can be obtained by the transformation is small. Furthermore,
some additional energy is needed to form a liquid phase because the interface
between the two phases is in a high-energy state. This makes it possible to
heat a system beyond its melting temperature without a phase transforma-
tion. The phase transformation can only occur if the increase in free energy is
large enough to compensate for the additional interface energy. If the process
occurs infinitely slow, however, the phase transformation can occur directly
at the transformation temperature because there is always a finite probability
of the additional interface energy being provided by thermal activation.

If we look at an alloy instead of a pure material, the situation becomes more
complicated. Depending on the solubility of the alloying elements, the system
can reduce its free energy by either mixing the components or by separating
different phases. Consider a completely solid system made of two elements
A and B. The entropy of the system is largest if both elements form a solid
solution because separating the atoms in two phases would reduce the number
of possibilities to arrange the atoms. At sufficiently high temperatures, we
therefore expect complete solubility of the two elements. At low temperatures,
the behaviour of the system depends on the strength of the bond between
the elements A and B: If it is stronger than the bond between A–A and B–
B, a solid solution is favoured at low temperatures as well. If the bond is
weaker, it is better to separate the phases at low temperatures. The result is a
miscibility gap, a region in the phase diagram (see below) where the elements
are not completely soluble.

Figure C.2 shows a phase diagram of a system with a miscibility gap. In this
kind of diagram, the concentration of the elements is put on the horizontal axis,
the temperature on the vertical. Within the diagram, the regions consisting
of different phases are marked to allow determining the phases of the system
as function of temperature and concentration of the alloying elements. The
regions are separated by boundary lines which denote a phase transformation.
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Fig. C.2. Sketch of a phase diagram of a system with a miscibility gap in the
solid state. At low temperatures, two separate phases coexist (point 1), at high
temperatures the elements mix in solid solution (point 2)

In some regions, the alloy is in a single phase; in others, it is in a two-phase
state.6 In phase diagrams of binary alloys, regions with one phase always
adjoin to regions with two phases, except for single points. This rule is helpful
in reading more complicated phase diagrams.

In the two-phase region, an A-rich and a B-rich phase coexist. The concen-
tration within the two phases can be read off by drawing a horizontal line from
the point characterising the actual system state. At the intersection of this line
with the boundaries of the two-phase region, the concentration within the two
phases can be found. The amount of the two phases can also be determined
because the overall concentration must equal the known concentration in the
alloy. If c denotes the total concentration of B, cA the B concentration in the
A-rich phase, and cB the B concentration in the B-rich phase, the masses mA

and mB of the A- and B-rich phase are given by the lever rule

mA

mA + mB
=

cB − c

cB − cA
,

mB

mA + mB
=

c− cA

cB − cA
.

(C.5)

If we cool down a system with a miscibility gap from the high-temperature
region, phases will separate similarly to the transition between solid and liquid
phases. Again, the transformation will only occur exactly at the transforma-
tion temperature shown in the diagram if the cooling is extremely slow. To
separate the two phases, diffusion processes in the solid have to occur which
are slow at low temperatures. Thus, it is possible to supercool the system by
6 In real systems, even at higher temperatures, a solid solution may not form be-

cause the melting temperature may be reached before the increase in entropy is
large enough.
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Fig. C.3. Schematic phase diagram of a binary system with complete solubility of
the components

cooling down so fast that no diffusion can occur. If we keep the system at low
temperatures, the diffusion coefficient may be so small that the system state
is practically stable, although it is not the thermodynamically favoured state
of lowest free energy. This is called a metastable state.

As already explained, a solid will transform to a liquid at high tempera-
tures. The liquid state can also be drawn in the phase diagram. As an example,
figure C.3 shows the phase diagram of a binary alloy with complete solubility
in the liquid and the solid state. At low temperatures, a solid solution forms;
at high temperatures, the system is liquid. If the system is cooled down from
the liquid phase, a two-phase region is encountered in which melt and solid
phase coexist. As we can see by drawing a horizontal line, the solid regions are
richer in the component with the higher melting point, whereas the concen-
tration of the lower-melting component is larger in the melt. With decreasing
temperature, the concentrations in the melt and the solid change until the
single-phase solid solution forms when the second boundary line is crossed.

Frequently, the components A and B are only partially soluble in the solid
state. In this case, the phase diagram is more complicated. One possible dia-
gram is shown in figure C.4. At high temperatures, in the liquid state, both
components are completely soluble, but at low temperatures, the solubility is
small so that two phases can coexist, one A-rich phase with dissolved B atoms,
usually called the α phase, and one B-rich phase with dissolved A atoms, usu-
ally called the β phase. The lower part of the phase diagram is similar to
figure C.2, for in this case there is also a miscibility gap with a two-phase re-
gion in the solid state. However, the gap ends at a certain temperature because
the material starts to melt. At higher temperatures, a mixture of melt and α
or β phase forms, depending on the concentration. There is a certain concen-
tration, called the eutectic concentration, where the solid transforms directly
into a melt and becomes liquid at a certain temperature, not in a temperature
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Fig. C.4. Schematic phase diagram of a binary system with limited solubility of
the components

regime. In this case, the temperature is below the melting temperature of both
components.

Depending on the binding energy between the atoms and on the possibility
of additional phases that may form, real phase diagrams can be much more
complex than the simple examples shown here. One example is the phase
diagram of the iron-carbon system in figure 6.50.
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The J integral

In this appendix, the J integral, introduced in chapter 5, will be derived and
discussed in detail. The derivation starts by introducing some concepts of
vector calculus. It is based on Gross / Seelig [58] and Rice [118].

D.1 Discontinuities, singularities, and Gauss’ theorem

Gauss’ theorem relates the surface integral and the volume integral of a vector-
valued function F (x):∫∫∫

V

(
∇ · F (x)

)
dx =

∫∫
S

F (x) · n dS . (D.1)

V is the integration volume with surface S, and n is the normal vector on this
surface.

Gauss’ theorem can be interpreted as follows: A vector field F (x) can be
visualised as consisting of flux lines filling space as shown in figure D.1. The
divergence ∇ ·F (x) of a vector field is a measure of its source strength. If the
divergence is zero in a region of space, the number of flux lines entering and
leaving the volume is the same (region 1 in figure D.1). If this is the case in
the whole space, the flux lines do not end or begin anywhere; they are closed.
If the divergence is non-zero, flux lines begin at this point (a source) or they
end there (a sink), as in region 2 of figure D.1. This is exactly the statement of
Gauss’ theorem: The volume integral is a measure of the total source strength
within V , the surface integral counts the flux lines entering and leaving the
volume. The normal vector in the surface integral ensures that ingoing and
outgoing flux lines are counted with opposite signs.

Gauss’ theorem is not universally valid, but only if the function F (x) is con-
tinuously differentiable with continuous derivative. If, however, the function
possesses a singularity (i. e., if its value approaches infinity), Gauss’ theorem
cannot be used and the left-hand and the right-hand side of equation (D.1)
are not identical anymore.
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vector field

region 1 region 2

Fig. D.1. Plot of a vector field F (x). In
region 1, ∇ · F (x) = 0 holds, in region 2
∇ · F (x) 6= 0

Q x1

x2

E Fig. D.2. Electrical field on the surface of a sphere sur-
rounding a point charge

This fact can be exploited by using Gauss’ theorem to check whether
a function with divergence zero contains a discontinuity or singularity in a
certain region. If the surface integral

∫∫
S

F (x)·n dS of a function F (x) with∇·
F (x) = 0 yields a non-zero value, there must be a discontinuity or singularity
in the volume V enclosed by S.

This can be illustrated using an example from electrostatics: The diver-
gence of the electrical field E(x) vanishes in vacuum, ∇ · E(x) = 0, implying
that the flux lines of the field do not end in free space. If, however, there is
an electrical charge, it acts – depending on its sign – as a source or sink of
flux lines. The electrical field of a small sphere with charge Q situated in the
origin of our coordinate system (figure D.2) fulfils the equation

E(x) =
Q

4πε0

x

|x|3
(D.2)

away from the charge. A simple calculation shows that the divergence of this
function vanishes.

To prove this, we write E(x) in Cartesian coordinates for each compo-
nent:

Ei(x) =
Q

4πε0
· xi

(x2
1 + x2

2 + x2
3)

3/2
.

In Cartesian coordinates, the divergence operator is

∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) .

Applying this to the field, we find

∇ · E(x) =
∂Ei

∂xi
=

∂E1

∂x1
+

∂E2

∂x2
+

∂E3

∂x3
= 0
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for x 6= 0.

The function E(x) contains a singularity at x = 0. If we integrate the electrical
field over the surface S with radius R, we find∫∫

S

E(x) · n dS =
Q

4πε0

∫∫
S

xn

|x|3
dS =

Q

4πε0

∫∫
S

R

R3
dS

=
Q

4πε0

1
R2

∫∫
S

dS =
Q

4πε0

1
R2

· 4πR2

=
Q

ε0
.

As can be seen, the surface integral does not vanish although the divergence
of the field vanishes at the integration surface. Thus, the surface integral can
be used to probe for charges in a volume. This is especially useful if the charge
is a point charge because in this case integrating over the volume would be
problematic because of the singularity.

A similar problem occurs in media containing cracks. In this case, there is
a singularity (for example in the stress field) at the crack tip. Furthermore, the
detailed conditions near the crack tip may be unknown, although they may
be known at some distance. Thus, if we can find a quantity with normally
vanishing divergence that contains a singularity or discontinuity at the crack
tip, this quantity can be used to gain information on the crack by integrating
over a surface far away. This idea is pursued in the following.

D.2 Energy-momentum tensor

Our task is to find a physical quantity that can be defined for any elastic-
plastic material, that has a vanishing divergence, and that becomes discontin-
uous or singular at a crack tip.

The most obvious choice would be the stress tensor σ. If there are no
volume forces, the stress tensor fulfils the equation ∇ · σ = 0 because stresses
are generated only where forces act. Using the stress tensor, however, has a
severe disadvantage because the stress is frequently prescribed by the external
load. This is illustrated in the following example:

Consider a tensile test specimen made of two materials with different
Young’s moduli E1 and E2 (figure D.3). The specimen is loaded with con-
stant force at its end. In this case, the stress is constant anywhere within
the specimen so that any surface integral over the stress vanishes within the
material.1 The discontinuity in the material properties thus cannot be found
using such an integral.

Another quantity whose values differ in both halves of the specimen is
the energy density w =

∫
σij dεij . At a given stress, the strain is larger in

1 For simplicity, transversal contraction is neglected here.
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Fig. D.3. Elastic medium with a discontinuous change in Young’s modulus. Also
shown is an integration surface S

the region with smaller Young’s modulus, corresponding to a larger energy
density. The energy density itself is not a suitable quantity, however, because
Gauss’ theorem requires a vector-valued function. Nevertheless, it is a good
idea to use a quantity containing the energy density. One such quantity is the
energy-momentum tensor T , defined by

Tij = w · δij − σjk
∂uk

∂xi
. (D.3)

Here, w is the energy density, σ the stress tensor, u the displacement vector,
and δij is the Kronecker delta introduced in appendix A.6.

The derivation of the energy-momentum tensor is way beyond the scope
of this book. The name stems from classical field theory which deals
with arbitrary physical fields like the electromagnetic field, the velocity
field in a fluid, or the strain field in an elastic medium. In field theory,
a generalised tensor is used, with some components describing the en-
ergy and momentum density of the system. In the context of elasticity
theory, the name energy-momentum tensor is misleading because none
of its components are the energy or momentum density. A detailed, but
mathematically involved, introduction to the subject can be found in
Landau /Lifschitz [86].

The energy-momentum tensor has the desired property of a vanishing diver-
gence:(

∇ · T
)
i
=

∂

∂xj
Tij = 0 (D.4)

for j = 1 . . . 3. This is easy to show if we take the equation ∂σij/∂xj = 0 into
account that is valid if there are no volume forces. We thus get not only one,
but three quantities to be used in Gauss’ theorem to test for discontinuities
or singularities.

D.3 J integral

To further study the energy-momentum tensor, we take another look at the
example of the medium with two different Young’s moduli (see figure D.3). The
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stress in the specimen is everywhere equal to the external stress σ; the strain
is constant in each half of the specimen, with 11-component ε(n) = σ/E(n),
where the superscript ‘n’ denotes the two halves. Using the energy density of
a linear-elastic material, w = σε/2, and the Poisson’s ratio ν (assumed to be
the same in both parts), the energy-momentum tensor is

T
(n)
ij = w(n)δij − σ

(n)
jk

∂u
(n)
k

∂xi
i. e.,

T (n) =
σ2

2E(n)

1 0 0
0 1 0
0 0 1

−

σ 0 0
0 0 0
0 0 0

 ·

ε(n) 0 0
0 −νε(n) 0
0 0 −νε(n)


=

σ2

2E(n)

1 0 0
0 1 0
0 0 1

−

σ 0 0
0 0 0
0 0 0

 · σ

E(n)
·

1 0 0
0 −ν 0
0 0 −ν


=

σ2

2E(n)

1 0 0
0 1 0
0 0 1

− σ2

E(n)

1 0 0
0 0 0
0 0 0


=

σ2

2E(n)
·

−1 0 0
0 1 0
0 0 1

 .

The energy-momentum tensor is thus rather simple and is constant in each
half of the material.

What happens if we apply Gauss’ theorem? As already stated, we have
three possibilities, one for each column of the matrix representation of the
energy-momentum tensor. We consider the surface S in figure D.3 and define
the three quantities J1, J2, and J3, called the J integrals,

Ji =
∫∫

S

Tij · nj dA , (D.5)

where n is the normal vector on the surface [118].
Since the tensor is constant in each half of the material, the four side faces

of the integration volume cancel (for each face, there is an opposite face with
opposite normal vector). We have to look at the two end faces with surface
area A only. This results in

J1 =
∫∫

A1

−σ2

2E(1)
· n1 dA +

∫∫
A2

−σ2

2E(2)
· n2 dA

=
σ2A

2

(
− 1

E(1)
+

1
E(2)

)
,

J2 = 0 ,

J3 = 0 .

(D.6)
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As can be seen, two of the three J values vanish, and only J1 is non-zero.
Because the discontinuity surface has a normal vector in the 1-direction, this
is a plausible result.

The J integral can also be interpreted directly: Looking at its unit, we see
that it has the unit of a force, but it is not too obvious what kind of force it is
and what it is applied to. A better interpretation can be found if we multiply
the J integral with a distance dx1. The resulting quantity dΠ = J1dx1 is
an energy. If we remember that the energy density in the elastic media is
w = σ2/2E(n), we see that dΠ is the energy that would be released if we were
to shift the interface in 1 direction by a distance dx1. The same interpretation
is valid for the other two J integrals: If we shift the interface in the 2 or
3 direction, nothing changes, and the energy release is zero. The J integral
can thus be interpreted as the differential energy release, the change in energy
when the discontinuity in the system is shifted by an infinitesimal distance.

So far, we considered the J integral only for the case of a medium with an
elastic discontinuity. The results, however, are universally applicable. Thus, if
S is an arbitrary surface with normal vector n enclosing a discontinuity or
singularity of the system, each component of the J integral J is defined as the
surface integral

Ji =
∫∫

S

Tij · nj dA . (D.7)

The differential energy release during an infinitesimal displacement dx of the
position of the ‘disturbance’ is dΠ = J ·dx. This simple interpretation of this
quantity as energy release is only valid in elastic (linear) media. In elastic-
plastic media, dΠ is the difference of the energy of two systems in which the
position of the disturbance differs by dx, but it is not always ensured that this
energy would in fact be released if the disturbance would actually move by
this distance (for example, when a crack propagates). This will be explained
in more detail below.

One important property of the J integral, following directly from what
we saw so far, is that it is independent of the integration surface. As long as
it encloses the disturbance, the exact choice of the surface is irrelevant. This
was already obvious in the example of the surface integral containing a point
charge: As long as the charge is enclosed, the value of the integral is indepen-
dent of the radius of the sphere and always equals Q/ε0. The same holds for
the medium with elastic discontinuity; again, the exact shape of the surface
does not matter, and only the enclosed surface of the disruption is important.
This property is important because it allows to perform numerical calculations
(for example, using finite elements) without calculating the detailed conditions
near the crack tip – it is sufficient if the stress and displacement fields in some
distance from the crack tip are correct.
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Fig. D.4. Simple configuration to evaluate the J integral

D.4 J integral at a crack tip

In the following, we will use the J integral to understand material behaviour
at a crack tip. The considerations are limited to the two-dimensional case
i. e., a system in a state of plane strain or stress. In this case, the integration
surface is chosen to have the same cross section at any x3 position. If we fix
an arbitrary x3 value, the integral is not a surface integral anymore, but only
a path integral2.

In two dimensions, the J integral in i direction is thus defined as

Ji =
∫

C

Tij · nj ds . (D.8)

Here, C denotes the integration path (or contour), n is the normal vector on
this path, and ds is an infinitesimal path element along the curve. The path
of integration has to enclose the crack tip. Apart from that, it is arbitrary as
explained above.

This path independence explains why the J integral can be used to charac-
terise a crack and is independent of other aspects of the material’s state. If we
choose the integration path close to the crack tip, it is plausible that the value
of the J integral depends only on the state there. Due to the path indepen-
dence, the value of the integral does not change if we continuously move the
path away from the crack tip, allowing us to use a distant integration path.

We now want to study the J integral using the simple example from fig-
ure D.4. The figure shows a crack in x1 direction in a material that is infinite
in the x1 and x3 direction and has a height h. The material is clamped at
the upper and lower end, with constantly prescribed displacement u on both
boundaries. The integration path C is chosen as shown in the figure. It starts
at one crack surface and ends at the other. In principle, the contour has
to be closed but because there is no material within the crack, the energy-
momentum tensor vanishes there. Since the crack is in the x1 direction, we
choose the J1 integral

J = J1 =
∫

C

[
w dx2 −

(
σ · ∂u

∂x1

)
· n ds

]
. (D.9)

2 Care has to be taken in evaluating this path integral: In most path integrals
occurring in mathematics or physics, the integration variable is a vector tangential
to the curve describing the integration path. This is different here: because the
path integral is in fact a dimensionally reduced surface integral, the quantity ds
is a scalar and the vector nj ds is perpendicular to the curve.
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If we move the x1 coordinate of the vertical parts of C to ±∞, it is easy to
calculate the value of the J integral. The two vertical parts above and below
the crack at x1 = −∞ do not contribute to the integral because the energy
density and the derivative of the displacement are zero. The integration along
the clamped ends does not contribute as well because the integration over the
energy density vanishes (dx2 is zero along a path in x1 direction) and because
the second term also vanishes due to ∂u/∂x1 = 0. The only remaining part
is the path at +∞. In this region, ∂u/∂x1 = 0 holds, so it is only the energy
density w∞ that contributes to the integral:

J1 = w∞h . (D.10)

It is somewhat problematic to use the energy interpretation of the J integral
in an infinitely extended system because the total energy of the system is
infinite. We can try to argue as follows: If we shift the crack tip in x1 direction
by dx1, some energy is released, and since the configuration after the shift
is the same as before (only displaced by dx1), this energy release can be
written as w∞h dx1. This argument is a bit obscure, however, because if the
configuration is the same, its energy must be the same as well. The problem is
that we consider the difference between two infinite quantities. Nevertheless,
this simple example shows that the J integral may serve to characterise a
crack in an elastic material.

According to the statements made above, the J integral can only be non-
zero if there is a singularity in the energy-momentum tensor. This is indeed
the case if there is a crack tip in an elastic material As shown in section 5.2.1,
stresses and strains become infinite if we approach the crack tip, see equa-
tion (5.1):3

σ ∝ 1√
r

,

ε ∝ 1√
r

.

(D.11)

r denotes the distance from the crack tip.
Such a singularity may seem unphysical. However, this is not the case be-

cause stresses, strains, and energy densities are only relative quantities that
cannot be measured directly. The strain, for example, is the normalised differ-
ence of the displacements at two points. The displacement itself cannot take
infinite values, but its change may, if normalised to an infinitesimally small
distance. The stress, defined as force per unit area, may become singular as
long as the forces in the medium stay finite.4 The energy density may also
3 A simplified argument for this is given below.
4 Strictly speaking, continuum mechanics cannot be used at the crack tip because

we must not neglect the fact that matter consists of atoms. This is discussed in
exercise 13.



www.manaraa.com

D.5 Plasticity at the crack tip 481

become infinite provided the energy of the system (the integral over the en-
ergy density) stays finite. According to equation (D.11), the energy density
w =

∫
σ dε is proportional to 1/r. In cylindrical coordinates, we can write

w(r, φ) = wφ(φ)/r. If we integrate the energy density within a circle C with
radius R around the crack tip, we find∫∫

C

w(x) dA =
∫ π

0

∫ R

0

w(r, φ)r dr dφ =
∫ π

0

∫ R

0

wφ(φ)
r

r dr dφ

=
∫ π

0

wφ(φ) dφ ·
∫ R

0

dr = R

∫ π

0

wφ(φ) dφ .

The energy stored in the region near the crack tip is thus finite.

D.5 Plasticity at the crack tip

The considerations made so far were valid in an elastic material. The J integral
is also to be used if the material is yielding close to the crack tip. Again,
stresses, strains, and energy densities become singular in this case.

The kind of singularity can be analysed – in a slightly simplified argument –
as follows: If we integrate the J integral along a circular path with radius R,
we find

J1 =
∫ π

−π

[
wn1 −

(
σ

∂u

∂x1

)
n

]
R dφ . (D.12)

The J integral must be path-independent as we saw above and thus have the
same value for all values of R. If we consider a small vicinity of the crack tip, it
is plausible to assume that the influence of the stress state far away from the
crack tip (i. e., the influence of the exact geometry of the component) becomes
less and less important and everything is determined by the geometry of the
crack (and the mode of loading).5

Furthermore, we assume that the energy-momentum tensor can be written
as T (r, φ) = Tr(r)Tφ(φ). The independence of the integral on the radius of the
integration path thus means that the value of the energy-momentum tensor
must be proportional to 1/R. Thus, we find Tr(r) = 1/r. The energy den-
sity and the product σijεij are each proportional to 1/r. In the linear-elastic
case, where σ ∝ ε, this implies that σ and ε are proportional to 1/

√
r (see

equation (D.11)).
For the case of a plastic material, we can assume the following relation

between stress and strain, using equation (3.16),

ε = K−1/nσ1/n , (D.13)

5 This assumption is justified with hindsight by the fact that we find a singularity in
the energy-momentum tensor, showing that external influences become negligible
if we approach the crack tip.
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if elastic parts of the strain are small compared to the plastic parts. Using
equation (D.13) and σε ∝ 1/r yields6

σ(r, φ) ∝ 1
rn/(n+1)

σφ(φ) , (D.14)

ε(r, φ) ∝ 1
r1/(n+1)

εφ(φ) (D.15)

for the singularity near the crack tip. The smaller the exponent n becomes,
the stronger is the singularity in the strain and the weaker is the singularity
in the stress.

What is the role of the J integral in this context? Because of the indepen-
dence of the stress- and strain fields from external influences far away from
the crack tip, all stress fields that we can find for a given crack geometry and
mode of loading (mode I, mode II, or mode III) are similar. They just differ
by a factor specifying the amount of loading. This factor is nothing but the
J integral. Thus, we can write T (r, φ) = (J/r)Tφ(φ). If we raise the external
stress, the value of the energy-momentum tensor changes accordingly. The
equations for the stress and strain are thus

σ(r, φ) = cσ

(
J1

r

)n/(n+1)

σφ(φ) , (D.16)

ε(r, φ) = cε

(
J1

r

)n/(n+1)

εφ(φ) . (D.17)

The constants cσ and cε depend on the geometry, the exponent n, and the
mode of loading, but not on the load strength. The J integral is thus a measure
quantifying the stress and strain field. The same is true for the linear-elastic
case from the previous section.

D.6 Energy interpretation of the J integral

As already detailed in section D.3, the J integral can be interpreted as specific
energy difference between two systems that differ by an infinitesimal displace-
ment of the singularity or discontinuity.7 This will be proven here.

To do so, we consider two three-dimensional bodies with an axially sym-
metric cavity. The task is to calculate the energy difference between the bodies
(see figure D.5). Both bodies are assumed to be absolutely identical except
for the cavity being larger in body B than in body A by an infinitesimal
volume ∆V . We assume both bodies to be elastic, but not necessarily linear-
elastic. This assumption is important because the work done by a deformation
on an elastic body is independent of the deformation history. Furthermore, we
6 Frequently, an exponent m = 1/n is used instead of n in these equations.
7 This may be, for instance, due to crack propagation.
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(a) Body A (b) Body B

ds

¢S   1

¢Sr

¢S0

(c) Cavity

Fig. D.5. Comparison of two bodies with cavities that differ by a volume ele-
ment ∆V . Further explanations in the text

assume all volume forces to be zero to ensure that the divergence of the energy-
momentum tensor vanishes.

To further simplify matters, we assume that the displacements on the
surface of both bodies are prescribed. Thus, no work is done by external
forces when material is removed from one of the bodies.8 The cavity within
the material is force-free as well.

The volume element to be removed is bounded by the following surfaces:
∆S0, ∆S1, and ∆Sr (see figure D.5). ∆S1 can be generated by an infinitesi-
mal displacement of ∆S0 by a distance ds. In three dimensions, ∆Sr is the
outer surface of a cylinder with height ds. The two parts generated by the
displacement, ∆S1 and ∆Sr, are united as ∆S = ∆S1 + ∆Sr.

We are looking for the difference of the energy stored in both bodies. To
calculate this energy, we can imagine to transform one body into the other in
two steps. We start by removing the volume element ∆V , replacing the forces
the material in the volume ∆V exerts onto the surface ∆S1 by external forces.
Thus, no work is done on the remaining volume of the material because the
removal of the volume is not seen by it. The energy dWV released in this step
is given by the integral of the energy density w over the volume ∆V :

dWV =
∫

∆V

w(x) dV

=
∫

∆S0
w(x)dsdS

=
∫

∆S1
w(x)dsdS ,

(D.18)

where the volume integral can be transformed to a surface integral because
the energy density within the infinitesimal volume can be considered to be
constant.
8 This assumption is not necessary in proving the energy interpretation of the

J integral, but it considerably simplifies the proof.
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In the second step, we now have to remove the surface forces that kept the
material in its old state so far. These surface forces F are determined by the
stress within body A on the surfaces ∆S1 and ∆Sr. If n is the normal vector
on the surface, we can write Fi = σijnj . These forces are now reduced to zero.
In this step, the systems does work dWS that is given by

dWS =
∫

∆S

Fi∆ui dS . (D.19)

Here, ∆u is the displacement resulting from reducing the forces. If the dis-
placement of the surface ds is small, we can assume that the displacement
field on the surface ∆S1 in body B is equal to the field on the surface ∆S0

in body A. In the case of a crack, where stresses and strains near the crack
tip are determined completely by the crack tip geometry, this assumption is
particularly plausible. The change in the displacement ∆u(x) on the surface
∆S1 is thus determined by the difference between the displacement field at a
point x1 on ∆S1 in body B and the displacement field of the corresponding
point x0 on ∆S0 in body A:

∆u(x1) = u(x0)− u(x1) =
∂u

∂x
ds . (D.20)

Furthermore, the work dWS contains a further term from the cylinder sur-
face ∆Sr. This contribution is small because the height of the cylinder is
infinitesimal. Thus, the total work done upon unloading of the surface is

dWS =
∫

∆S1
σijnj

∂ui

∂xk
dsk dS . (D.21)

The total change in the energy is thus

dW =
∫

∆S1

(
w(x)ds− σijnj

∂ui

∂xk
dsk

)
dS . (D.22)

The term in parentheses is the J integral multiplied by the displacement ds
of the surface. This proves the energy interpretation of the J integral.

During the derivation, we used the fact that the result is independent
of how we obtained the final state of the system (i. e., body B) from the
initial state. Strictly speaking, this is valid only for elastic bodies. If plastic
deformations occur, the energy interpretation has to be handled with care. It
is still valid if the so-called theory of deformation plasticity is used, which
assumes that there is no unloading within the material. This condition is
frequently met so that the J integral can used even in plasticity in many
cases.
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List of symbols

Scalars

α angle in lattice
α (mean) coefficient of thermal

expansion
αk stress concentration factor, we

use Kt

β angle in lattice
βk fatigue notch factor, we use Kf

γ angle in lattice
γ shear strain
γ, γ0 specific surface energy
Γ0 surface energy
δ thickness of a grain boundary
δ displacement of loading points
δt crack tip opening displacement
ε (nominal) normal strain
εB rupture strain of a polymer
εM strain at the tensile stress of a

polymer
εtB rupture strain of a polymer
εY yield strain of a polymer
ε
(pl)
eq equivalent plastic stress

ε̇
(pl)
eq equivalent plastic strain rate

θ angle
λ half distance of obstacles
λ Lamé’s elastic constant
λ compliance
λ angle
λ̇ proportionality factor in the

flow rule

µ Lamé’s elastic constant
ν Poisson’s ratio
% density
% notch radius
% dislocation density
σ normal stress
σI, σII, σIII principal stresses, sorted by

their value (σI ≥ σII ≥ σIII)
σ0 stress with largest density of

failure probability
σ1, σ2, σ3 principal stresses, unsorted
σa stress amplitude
σB rupture strength of a polymer
σb buckling stress
σC cleavage strength
σc critical stress
σc inert strength
σE fatigue limit
σE,nss fatigue strength of a notched

specimen (net-section stress at
the notch root)

σeq equivalent stress
σeq,cM equivalent stress of the coni-

cally modified yield criterion
σeq,pM equivalent stress of the paraboli-

cally modified yield criterion
σeq,M von Mises equivalent stress
σeq,T Tresca equivalent stress
σF plastic flow stress
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σf stress in fibre
σf,B fracture strength of a fibre
σhyd hydrostatic stress
σl lower limit stress (Weibull)
σlimit maximum allowed stress
σm stress in matrix
σm mean stress
σm,F yield strength of the matrix
σmax maximum stress in the notch

root
σmax maximum stress
σmin minimum stress
σM tensile strength of a polymer
σnss net-section stress at the notch

root
σp proof stress in a proof test
σt true stress
σY yield strength of a polymer
∆σ stress range
∆σd amount of work hardening
∆σgbs amount of grain boundary

strengthening
∆σps amount of particle strengthen-

ing
∆σsss amount of solid solution

strengthening
τ shear stress
τ∗ effective shear stress
τcrit critical shear stress
τF shear flow stress
τ (ss) shear stress in a slip system
τi interfacial shear stress
τi frictional stress
τrel relaxation time
τret retardation time
ϕ true strain
ϕ angle coordinate
ϕneck strain at which necking of the

specimen sets
χ stress gradient at the notch

root
χ∗ relative stress gradient at the

notch root
Ω volume of a vacancy
a crack length of surface cracks,

half crack length of interal
cracks

a lattice constant
a fatigue strength exponent

a∗ critical crack length
da/dN crack propagation per cycle
∆a crack propagation
A anisotropy factor
A short name of the elongation

after fracture A5.65

A, A∗ material parameters of subcriti-
cal crack growth

A (cross-sectional) area
A5.65 elongation after fracture for

L0/
√

D0 = 5.65
A11.3 elongation after fracture for

L0/
√

D0 = 11.3
AC material constant of Coble

creep
AGBS material parameter of grain

boundary sliding
ANH material parameter of Nabarro-

Herring creep
b fatigue ductility exponent
b lattice constant
b length of the Burgers vector
B, B∗ material parameters of subcriti-

cal crack growth
B material parameter of power-

law creep
c lattic constant
c concentration
C Larson-Miller constant
C constant in the Paris equation
C hardening parameter
d diameter
d grain size
d∗ width of an obstacle
d0 initial diameter in a tensile test
D damage
D diffusion constant
D0 diffusion constant
DGB diffusion coefficient of self-

diffusion
DV diffusion coefficient of volume

diffusion
E energy
E Young’s modulus
Ec creep modulus
Er relaxation modulus
f yield function
f probability density
ff volume fraction of the fibres
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fm volume fraction of the matrix
fV volume fraction
F free energy
F force
Fi binding force
FQ critical force
g yield function
g probability density of the proof

test
G free enthalpy
G shear modulus
Gf failure probability during the

proof test
G,GI,GII,GIII energy release rate
GIc critical energy release rate
h crystallographic index
H hardening coefficient
HB Brinell hardness
j vacancy current density
J vacancy current
J J integral
J1, J2, J3 principal invariants
k Boltzmann’s constant
k spring stiffness
k crystallographic index
k hardening parameter
kd work hardening constant
kF critical stress for the von Mises

yield criterion
kHP Hall-Petch constant
kl hardening parameter
kps particle strengthening constant
K bulk modulus
K, KI, KII, KIII, KQ stress intensity

factor
KI0 limiting value of the stress in-

tensity factor of subcritical
crack growth

KIc fracture toughness
KIR crack-growth resistance
Kf fatigue notch factor
Km mean stress intensity factor
Kop crack opening stress intensity

factor
Kt stress concentration factor
∆K cyclic stress intensity factor
∆Keff effective cyclic stress intensity

factor
∆Kth fatigue-crack-growth threshold

l crystallographic index
l length
l0 initial length
lc critical length in fibre compos-

ites
L current gauge length in the ten-

sile test
L0 initial gauge length in the ten-

sile test
m ratio of tensile and compressive

yield strength in polymers
m Weibull modulus
m∗ Weibull modulus of the life

time
M Taylor factor
n exponent of the Paris equation
n exponent of the power law of

subcritical crack growth
n creep exponent
n hardening exponent
nχ notch support factor
N count
N number of stress cycles
NE limiting number of cycles
Nf number of cycles to failure
p pressure
P Larson-Miller parameter
P probability
Pf failure probability
Ps probability of survival
Q activation energy
Qex activation energy for vacancy

migration
QV enthalpy required to create a

vacancy
QV energy difference to an oversatu-

rated phase
r atomic distance
r reciprocal transition time

(Garofalo equation)
r radial coordinate
r particle radius
r∗ critical particle radius
r0 stable atomic distance
R gas constant
R radius
R stress ratio (R ratio)
Rc compressive yield strength of

ductile materials
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Rcm compressive strength of brittle
materials

ReH upper yield strength of materi-
als with an apparent yield point

ReL lower yield strength of materi-
als with an apparent yield point

Rm tensile strength
Rp yield strength of materials with-

out an apparent yield point
without specifying the plastic
deformation

Rp0.2 0.2%-yield strength of materials
without an apparent yield point

S current cross-sectional area in a
tensile test

S entropy
S0 initial cross-sectional area in a

tensile test
Si partial damage
t notch depth
t thickness of a specimen
t time
tf failure time

T line tension of a dislocation
T period in fatigue
T temperature
Tg glass transition temprature
Tm melting temperature
T/Tm homologous temperature
U energy, potential
U (el) stored elastic strain energy
v0 displacement of the crack sur-

faces (half crack opening)
V volume
V ∗ activation volume
V0 reference volume
W work
w energy density, work density
w(el) elastic energy density
ẇ(pl) power dissipated during plastic

deformation
x coordinate
X position of the notch root
Y geometry factor (fracture me-

chanics)

Vectors

In this list, the vectors are printed in the index notation. The corresponding symbol
notation can be built using the scheme (ai) b= a. Unless stated otherwise, the indices
run from 1 to 3.

εα strain vector (Voigt notation,
α = 1 . . . 6)

ξi coordinate in an undeformed
system

σα stress vector (Voigt notation,
α = 1 . . . 6)

bi Burgers vector

mi slip direction
ni normal vector
ti line vector of a dislocation
ui displacement
vi direction of movement of a dis-

location
xi coordinate
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Matrices and tensors

In this list, the matrices and tensors are printed in the index notation. The corre-
sponding symbol notation can be built using the scheme (Aij) b= A and (Aijkl) b= A∼4

,
respectively. Unless stated otherwise, the indices run from 1 to 3.

δij Kronecker delta
εij strain tensor
ε̇
(pl)
ij plastic strain rate

σij stress tensor
σ′ij deviatoric stress tensor
σ

(eff)
ij effective stress

σ
(kin)
ij kinematic backstress

Cαβ elasticity matrix (Voigt nota-
tion, α, β = 1 . . . 6)

Cijkl elasticity tensor
Fij deformation gradient
Gij Green’s strain tensor
Rij rotation tensor
Sαβ compliance matrix (Voigt nota-

tion, α, β = 1 . . . 6)
Sijkl compliance tensor
Tij energy-momentum tensor
Uij right stretch tensor

Indices and operators

α, β tensor calculus: indices in the
Voigt notation, possible values:
1 to 6

∇ divergence
∆ range in cyclic loads e. g.,

∆σ = σmax − σmin

1, 2, 3 unsorted principal values of
stress tensors

I, II, III sorted principal values of stress
tensors

i, j, k, l tensor calculus: running index
for the tensor components, pos-
sible values: 1 to 3

m mean value in cyclic loads e. g.,
mean stress σm = (σmax +
σmin)/2

max maximum value in cyclic loads
e. g., maximum stress σmax

min minimum value in cyclic loads
e. g., minimum stress σmin
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Index

α iron see iron, steel, ferrite
α relaxation 259
β relaxation 259
γ iron see iron, steel, austenite
γ′ phase 389, 404
δ iron 218
ε-N diagram see strain-cycle diagram
σ-ε diagram see stress-strain diagram
σ-N diagram see S-N diagram

abs see acrylonitrile-butadiene
styrene

acrylonitrile-butadiene styrene 292
activation (thermal) 185, 194, 196, 257,

258, 266, 267, 373, 387, 401, 405,
414, 437, 465–466

activation energy 268, 385, 418, 444,
466

– diffusion 208
– grain boundary diffusion 395
– self-diffusion 385
– vacancy 390, 391, 402, 466

activation volume 195, 390, 392
addition polymerisation 24
age hardening see precipitation

hardening
ageing 213–216, see also precipitation

reaction, precipitation harden-
ing, strain ageing, overageing,
underageing

– artificial 214–216
– natural 214–216

aggregate (concrete) 298
Al2O3 see aluminium oxide

alanine 282
alloy 5, 7, 14, 383, 389, 404, 469–472,

see also alloying, metal, superalloy,
phase diagram, strengthening
mechanisms

– binary 214, 219, 404, 470, 471
– eutectic 471
– polycrystalline 182
– single crystal 402
– single-phase 206, 215, 216, 469, 470
– two-phase 209, 215, 470, 471

alloying 5, 41, 117, 203, 206, 217, 222,
403, 404, 406, 469–472

alternating stress see reversed stress
alternation of load see cycle, fatigue
alumina see aluminium oxide
aluminium 5, 192, 200, 205, 206, 213,

404, 414
– creep 399, 403
– critical crack length 145
– dispersion strengthening 218
– fatigue 355, 362, 363, 419, 447
– fatigue limit 380
– fracture toughness 412, 434
– grain boundary strengthening 415,

438
– hardening exponent 83
– matrix 322–323, 365
– notch 121
– precipitation hardening 214, 216,

217
– service temperature 386
– stress corrosion cracking 150
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aluminium. . .
– stress-strain diagram 81, 125, 126,

411, 433
– tensile test 80, 126
– wear 209
– work hardening 200, 415, 437
– yield criterion 410, 431
– yield strength 192, 200, 206, 214,

380, 410, 431
– Young’s modulus 40, 55, 56, 411,

433
aluminium-copper phase diagram 214
aluminium oxide 16, 218, 249, 251, 316,

322, 323
– crack propagation 236, 417
– cracking 151
– critical crack length 145
– density 250
– matrix 323, 324
– microstructure 23
– powder size 250
– service temperature 386
– strength 73, 250
– stress-strain diagram 73
– Weibull modulus 238
– Young’s modulus 40, 250
– zirconia-toughened 254

aluminium titanate 249, 252
amino acid 282, 328
amino group 25, 286
amorphous
– ceramic 22, 227
– metal 23
– phase see glassy phase
– polymer see polymer – amorphous,

thermoplastic – amorphous
anisotropy 9, 102, see also transversal

isotropy, orthotropy, kinematic
hardening

– aramid 320
– composite 302–303
– elastic 50–59, 302–303
– gas turbine blades 58
– macroscopic 57
– nacre 327
– thermal expansion 252
– wood 326

anisotropy factor 52, 55

annihilation 185–187, 191, 203, 371,
388, see also Orowan mechanism

anti-phase boundary 212
apparent yield point 70, 71, 73, 207,

see also yield strength, flow stress
– polymer 72

apparent yield strength see apparent
yield point

aragonite 327, 328
aramid 26, 27, 270, 281, 283, 287, 316,

319, 320
aramid fibre see aramid
arrest marks see beach marks
Arrhenius law 208, see also activa-

tion energy, diffusion, diffusion
coefficient, Boltzmann’s law

artificial ageing 214–216
astm e 399 (standard) 153, 155, 156
astm e 561 (standard) 147, 157
astm e 8M (standard) 69
atactic see tacticity
athermal process see dislocation –

athermal obstacle
ati see aluminium titanate
atomic bond see bond
atomic distance 5, 37, 408, see also

bond – length, lattice constant
atomic interaction see bond, interac-

tion (atomic)
atomic number 2
atomic structure 1–5
austenite 206, 218, 220, see also steel,

iron
– creep 406
– self-diffusion 402
– shape memory alloy 222
– Young’s modulus 40

austenitic steel see austenite, steel,
iron

Avogadro’s constant 408
axial stress see longitudinal stress

backstress (kinematic) 101
Bain (martensite model) 220
basal slip system 178
basis see crystal – basis
Basquin equation 360, 361, see also

Coffin-Manson-Basquin equation
Bauschinger effect 103
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bcc see cubic crystal – body-centred
beach marks 337, 343
binary alloy 214, 219, 404, 470, 471
binding energy 17, 37, 204, see also

bond
– dipole bond 19
– hydrogen bond 21
– ionic bond 18
– metallic bond 7
– sodium chloride 18, 407, 424
– van der Waals bond 20

binding force 37, 114, see also binding
energy, bond

biomimetic material 328
bivalve 327
block copolymer see copolymer
body-centred cubic crystal see cubic

crystal – body-centred
Boltzmann factor see Boltzmann’s

law, thermal activation
Boltzmann’s constant 195, 267, 392,

465, 466
Boltzmann’s law 387, 391, 465, 466,

see also thermal activation,
Arrhenius law

bond 4–5, 37, 61, see also binding
energy

– alloy elements 469
– angle 407, 424
– carbon 407, 424
– covalent 16–17, 23, 61, 257, 270
– dipole 19, 20, 24, 257, 259, 270, 286
– dispersion see bond – van der

Waals
– elasticity 37
– hydrogen 20–21, 24, 257, 259, 270,

286
– intermolecular 269
– ionic 18–19, 61
– length 286, 407, 408, 424, see

also atomic distance, lattice
constant

– melting 260
– metallic 5–7, 61
– polar 19
– rotation 258, see also chain

molecule – rotation
– spring model 261

bond. . .
– van der Waals 19–20, 24, 257, 270,

286
bone 328–331
boron 322, 323
brake disc 324
brass 5, 40, 83
Bravais indices see Miller-Bravais

indices
Bravais lattice 8, 9, 21, 165, see also

crystal
Brinell hardness test 108
brittle-ductile transition see ductile-

brittle transition
brittle failure 70–72, 109, 116, 196, 227,

275, see also cleavage fracture,
embrittlement, fracture mechanics

– macroscopic 111
– particle 111

brittleness 17, 71, 222, 227, 285, see
also fracture strain, ductility,
ceramic, Weibull statistics, brittle
failure

bronze 5, 40, 41
Brownian motion 465
buckling see fibre – buckling
bulk modulus 408, 425, 426
Burgers circuit 166–168
Burgers vector 166–168, 170, 172,

173, 184, 186, 188, 190, 197, 415
butadiene 292

CaCO3 see calcium carbonate
CaF2 see fluorite
calcium carbonate 327
candy catapult 409, 428
carbide 14, 222, 403, 405, 406
carbon 4, 5, 16, 21, see also diamond
– bond 407, 424
– in steel 205, 206, 218–223, 371,

403
carbon dioxide 19
carbon fibre 303, 316–319, 320, 322,

323, 348, 365, 419, 446
carbon-fibre reinforced polymer 40,

305
carbon-iron phase diagram 219
carboxyl group 259
cast iron 209
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cast iron. . .
– fatigue 363
– notch support factor 379
– Weibull modulus 238
– Young’s modulus 40

casting 338
casting pore 129, 338
catastrophic fracture see overload

fracture
cavern-type pore 400
cavity 112, 162, 276
cell wall (wood) 325
cellulose 325
cement 298
cementite 14, see also carbide
cephalopod 327
ceramic 15–23, 121, 227–255, 345,

393, 396
– amorphous 22, 227
– binding energy 17
– compressive strength 143, 144, 229,

250
– corrosion 151
– crack branching 231
– crack deflection 230, 249, 251, 255,

345
– crack propagation 249
– creep 393, 396
– crystalline 21
– damage 229–255
– defect size 236, 237, 248, 249
– deformability 17, 229
– design 416, 417, 439, 440
– dispersion strengthening 248, 295,

298
– ductile particles 255
– elementary 16
– fatigue 345, 362–364
– fracture 227–255, see also

fracture, fatigue
– fracture toughness 139, 144, 147,

248
– glassy phase 229, 249, 250, 396
– initial crack 227, 229, 248
– load transfer 230
– manufacturing 228–229
– microcrack 117, 231–232, 233, 234,

251–252, 255, 345

ceramic. . .
– microstructure 23, 230, 231, 249,

250, 252–254
– polycrystal 22
– powder 228, 249, 250
– reference volume 240
– service temperature 60, 385
– strength 70, 72, 110–118, 227,

229–255
– strengthening mechanisms 248–255
– stress-strain diagram 70, 72
– structure 15–23, 230, 250, 252, 254,

393
– temperature dependence 229, 364
– temperature resistance 227
– tensile strength 70, 72, 117, 229,

250, see also ceramic – strength
– tensile test 70
– transformation toughening 252–

255, 345, 468
– Young’s modulus 40

ceramic matrix composite 300, 305,
306, 308, 310, 311, 323–325, 348

cermet 298
chain molecule 23, 24–29, 257–263,

267–270, 274–293
– cross-link 28, 273, 319
– entanglement 272, 273
– fracture 347
– length 407, 424
– mobility 25, 258, 261, 285–287, 289,

347
– orientation 287, 289
– rotation 25, 258, 285
– shearing 278
– side group 259
– straightening 280

change of cross-sectional area see
notch, necking

charge fluctuations 19
Châtelier effect see Portevin-Le-

Châtelier effect
chemical bond see bond
chlorine 18, 293
chopped fibre see fibre – short
chromium 217, 405
chromium carbide 405
chromium oxide 217
circle (Mohr) see Mohr’s circle
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circumferential stress 78, 113, 123, 127,
128, 233, 413

clamshell marks see beach marks
classical continuum 33, 458
cleavage fracture 114–115, 131, 145,

344
cleavage plane 115
cleavage strength 114–115, 116, 142,

143, 196, 413, 435
climb (dislocation) 175, 187, 192, 196,

389, 405
close-packed structure 10, 13, 21, 175,

177, 178, 189, 195, 402, 407, 423,
see also hexagonal crystal, cubic
crystal – face-centred

cmc see ceramic matrix composite
CO2 19
coarse-grained microstructure see

microstructure – coarse-grained
coaxing 369
cobalt 298
Coble creep 395
cod (crack opening displacement) see

crack opening, crack tip opening
displacement

coefficient of thermal expansion 59,
61, 209, 230, 251, 253, 422, see also
thermal expansion

– aluminium titanate 252
– composite 300, 321, 323, 324
– negative 252, 323

Coffin-Manson-Basquin equation 362
Coffin-Manson equation 361
coherent particle 15, 192, 216, 403
cohesive strength see cleavage

strength
cold compaction 228
cold-working hardening see work

hardening
collagen 328
common salt see sodium chloride
compact tension specimen see ct

specimen
compaction (ceramic) 229, 249
compatibility (deformation) 114, 182,

202, 395, 396
completely reversed stress see fully

reversed stress

compliance 141, 148, 154, 158, see also
complicance tensor, compliance
method

compliance matrix 49, 52–54, see also
compliance tensor

compliance method 158
compliance tensor 48, 51, 53, 103, see

also compliance matrix
component design see design
component matrix 452
composite 42, 57, 209, 290, 295–331,

347–349, 365–366, 395, 419, 445,
446, see also fibre

– anisotropy 302, 315
– ceramic matrix 300, 305, 306, 308,

310, 311, 323–325, 348
– compressive strength 313–315, 318,

319, 321, 419, 446
– crack-growth curve (fatigue) 355
– crack propagation 250, 308–312,

324, 347–349
– creep 395
– damage 313, 319, 348, 355, 366
– deformation 306, 321
– design 323, 324
– detachment 309, 348
– elasticity 300–303, 320, 419, 445,

446
– failure 303–315
– fatigue 347–349, 355, 365–366
– fracture toughness 250, 308, 313,

323
– in-series connection 301, 419, 445
– interface see fibre – interface
– load transfer 305–312
– matrix 295, 299–300, 306
– metal matrix 299–300, 306, 313,

321–323, 348, 365
– microcrack 348
– microstructure 304
– parallel connection 301, 303, 419,

445
– particle geometry 296–299
– plasticity 303–305, 312–313
– polymer matrix 299, 306, 313,

315–321, 348, 365
– residual stress 300, 304
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composite. . .
– rule of mixtures 301–305, 419, 445,

446
– – isostrain 301, 303, 305, 445, 446
– – isostress 302, 446
– sandwich structure 299
– service temperature 299, 319
– strength 303–315, 318–322, 326,

419, 446
– stress-strain diagram 304, 311
– temperature resistance 319–321
– tensile strength 303–313, 318, 320,

322, 419, 446
– thermal expansion 300, 321, 323,

324
compressive strength 93, 143, 144, 146
– aluminium oxide 250
– ceramic 143, 144, 229, 250
– composite 313–315, 318, 319, 321,

419, 446
– concrete 298
– metal 366
– polymer 92, 93, 278

compressive test 93, 370, 411
concrete 40, 298
– ferro- see ferroconcrete
– prestressed 298

condensation polymerisation 24
conductivity
– electrical 7
– thermal 7, 323, 346, 348, 365

cone-and-cup fracture see cup-and-
cone fracture

configurational interaction see
short-range order interaction

conically modified yield criterion see
yield criterion – conically modified

conservation of energy 466
constraining force 140
continuous fibre see fibre – continuous
continuous vibration fracture see

fatigue – fracture, fatigue – crack
propagation

continuum mechanics 32–37, 83, 94,
130, 181, 349, 434, 458

contraction of tensors 453, 455
coordinate system (crystallographic)

see Miller indices, Miller-Bravais
indices

coordinate transformation 456
coordination number 12
copolymer 290–293, 298, 347
copper 5, 41, 202, 205, 209, 213
– Young’s modulus 40, 55, 56

copper-aluminium phase diagram 214
corrosion 14, 117, 118, 130, 150, 151,

217, see also intercrystalline cor-
rosion, stress corrosion cracking,
fracture – corrosion induced

corrosion resistance 150, 206, 217, 227,
250

Cosserat continuum 33
covalent bond 4, see bond – covalent
Cr2O3 217
crack 129–164, 337–357, 373, see also

crack tip, fracture, microcrack,
initial crack, crack propagation,
fracture mechanics, fatigue

– attraction 230, 251, 255
– ceramic 229–255, 345
– cyclic loading 338–342, 347
– energy see crack propagation –

energy
– geometry factor see geometry

factor
– initiation 113, 115, 129, 130, 162,

163, 276, 278, 281, 291, 312,
337–342, 344, 347, 348, 360, 362,
374

– internal 132, 135, 139
– metal 337–345
– micro- see microcrack
– notch 380–382
– repulsion 230
– short see microcrack, initial crack
– stationary 129
– surface 139, 140, 142

crack arresting 148
crack branching 231
crack bridging 230, 255, 309, 345, 348
crack closure see fatigue – crack

closure
crack deflection 230, 249, 251, 255, 309,

345
crack extension see crack propagation
crack-extension force see energy

release rate
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crack-extension resistance see
crack-growth resistance

crack front see crack tip
crack growth see crack propagation
crack-growth curve (fatigue) 353–356
crack-growth rate
– fatigue 350, 352–357, 382, 420, 447
– subcritical crack propagation

150–152, 234–235, 417, 440
crack-growth resistance 146–150, 152,

157, 161–163, 229–234, 249–255,
310, 345, 417, 440

crack-growth resistance curve 147–150,
152, 157, 163

– elastic-plastic fracture mechanics
162

crack length 139, 140, 142, 143, 146,
147, 157, 161, 341, 349, 352, 373,
380, see also crack propagation,
fracture mechanics, fatigue

– critical 143, 144, 328, 338, 355, 373,
374, 379, 419, 447

– ct specimen 153
– geometry factor 139
– measurement 157

crack opening 134, 137
crack opening displacement see

crack opening, crack tip opening
displacement

crack propagation 129, 134, 139,
141–143, 146, 230, 249, 338, 342,
349–357

– ceramic 229–235, 242–243,
249–255

– composite 308–312
– elastic-plastic fracture mechanics

161
– energy 130, 134–150, 161, 229,

230, 232, 248, 255, 310, 345, 480
– fatigue 340, 342–344, 347,

349–357, 374, 419, 447
– grain boundary 341
– impeding 229–234, 249–255,

308–312
– silicon nitride 250
– stable 146–150, 234, 343
– subcritical 150–152, 234–235,

242–243, 345, 417, 440
– unstable 147–150, 163, 355

crack propagation rate see crack-
growth rate

crack surface 130, 131, 134–136, 155,
162, 230, 342, 345, see also fracture
surface

crack tip
– plastic deformation 139, 143, 145,

147, 154, 156, 158, 162–163, 342,
481, see also crack propagation
– energy

– singularity 132, 412, 434, 475, 480,
481

– stress field 131–134, 309, 412, 434
– unloading 230, 251

crack tip opening displacement 158,
342

crankshaft relaxation 259
craze 276, 277, 285, 291, 292, 347
creep 265, 383–406
– cavern-type pore 400
– ceramic 393, 396
– Coble 395
– composite 395
– deformation mechanism map

396–400
– design 421, 449, 450
– diffusion 385, 393–396, 398, 402
– dislocation 389, 398
– fracture 396, 400–401
– Garofalo equation 384
– grain boundary sliding 396, 401,

406
– grain size 394, 395, 400, 402
– Larson-Miller parameter 386, 387,

390, 421, 449
– life time see creep rupture time
– mechanisms 388–400
– microcrack 400
– microstructure 383, 389, 403
– Nabarro-Herring 394
– Norton 385, 392, 404, 421, 450
– polymer 269
– pore 400
– power-law 385, 392, 404, 421, 450
– power-law breakdown 392
– primary 383, 388–389
– secondary 383, 388–389, 392
– stages 388–389
– steady-state 383, 388–389, 392
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creep. . .
– strain rate see creep rate, strain

rate
– stress exponent see creep exponent
– temperature dependence 384, 392,

394–400
– tertiary 384, 392, 400, 401
– transient 383, 388–389
– wedge-type pore 400
– work hardening 388

creep crack growth 151
creep diagram 385
creep exponent 385, 392, 396, 398
creep fracture see creep – fracture
creep modulus 264, 265, 268, 417, 441
creep rate 383–385, 388, 389, 392, 393,

396, 400, see also strain rate
creep rupture 400
creep rupture strength 405, 406
creep rupture time 406
cristobalite 22
critical crack length see crack length –

critical
critical energy release rate see energy

release rate – critical
critical fibre length see fibre – critical

length
critical radius 215
critical resolved shear stress 178–183,

189
critical stress see also strength, yield

strength, flow stress, fracture
toughness, critical resolved shear
stress

– dislocation slip 182
– fracture mechanics 134, 138,

146–148
cross-link 28, 273, 319
cross-linking density 28, 274, 319
– diamond 28, 274

cross-sectional area see notch, necking
– tensile test 69, 73, 75–78, 82

cross slip 174, 192, 196
crystal 6–13, 21–22
– basis 11, 21
– Bravais lattice see Bravais lattice
– cubic 8–10, 12, 13, 18, 50–54, 117,

175, 177, 189, 195, 252, 407, 423

crystal. . .
– distortion see elastic lattice

distortion
– hexagonal 9, 10, 13, 21, 54, 178, 189,

250, 317, 407, 423
– hexagonal close-packed 10, 13, 21,

178, 189, 407, 423
– lattice constant 9, 12, 15, 18, 404,

412, 414, 415, 425, 434, see also
atomic distance, bond – length

– monoclinic 9, 10, 54, 252
– orthorhombic 8–10, 53–54
– primitive unit cell 11
– rhombohedral 9, 10, 252
– stacking sequence 13
– symmetry 8
– tetragonal 9, 10, 54, 252
– triclinic 9, 10, 54
– trigonal see crystal – rhombohedral
– unit cell 8, 11
– vacancy see vacancy

crystal gliding see twinning
crystal orientation 15, 16, 57, 182,

183, 200, 223, 414, see also Miller
indices, Miller-Bravais indices

crystal system see crystal
crystal twin see twinning
crystallinity 28, 286–289
crystallisation 14, 21, 22, 53, 185, 250,

329, see also recrystallisation
crystallite see grain
crystallographic coordinate system

see Miller indices, Miller-Bravais
indices

ct specimen 152, 163, 412, 434
cte see coefficient of thermal

expansion
ctod see crack tip opening displace-

ment
cubic crystal 8–10, 18, 50–54, 252
– body-centred 9, 10, 12, 117, 177,

195, 407, 423
– elasticity see elasticity, Hooke’s

law – cubic crystal
– face-centred 9, 10, 13, 175, 189, 407,

423
– Hooke’s law see Hooke’s law –

cubic crystal
– simple 8, 9, 18
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cup-and-cone fracture 79, 80, 114
cutting 191, 199, 211–213, 218, 371
– destroying particle 213, 371
– dislocation see dislocation –

intersection
– dispersoid 218
– obstacle 191, 199, 212
– particle 211–213, 371

cutting plane 32
cutting tool 298, 324
cycle 335, see also fatigue, number of

cycles
cycle number see number of cycles
cyclic creep see ratchetting
cyclic hardening 339, 369
cyclic load see fatigue
cyclic relaxation 372–373
cyclic softening 339, 369
cyclic stress-strain diagram 369–373

da/dN curve see crack-growth curve
(fatigue)

dahllite 329
damage 110–118, see also crack,

failure, fracture, fatigue, creep
– ceramic 229–255
– composite 313, 319, 348, 355, 366
– creep 396, 400–401, 403
– fatigue 337–349, 355, 366, 368–369
– metal 196, 217

damping 264, 418, 443, see also
hysteresis

damping element see dashpot element
dashpot element 264, 417, 421, 441,

449, 450
dead load 135, 140
decomposition (polymer) 263
deep drawing 200, 208, 210
defect size
– ceramic 236, 237, 248, 249
– fibre 296, 303

deformation see also strain
– compatibility 114, 182, 202, 395,

396
– elastic see elasticity
– irreversible see plasticity, creep
– large 64
– plastic see plasticity
– reversibel see elasticity

deformation. . .
– small 64, 68
– time dependence 195, 259,

263–269, see also creep,
viscoelasticity, viscoplasticity

deformation energy see energy
deformation gradient 66, 431
deformation mechanism map 396–400
deformation modes 31
deformation plasticity 484
deformation rate see strain rate, creep

rate
deformation twin see twinning
degree of polymerisation 24, 25, 262,

263, 293, 407, 424
delayed fracture 118, 150, see also

subcritical crack propagation,
fracture

density see also vacancy – density,
dislocation density, cross-linking
density, stress trajectory density,
energy density, probability density

– aluminium oxide 250
– fibre 316
– polymer 290
– relative 12, 407, 423
– sodium chloride 408, 425

design
– ceramic 241, 416, 417, 439, 440
– composite 305, 315, 319, 321, 419,

446
– cracked components 349, 374
– creep 421, 449, 450
– fatigue 333, 349, 374, 419, 447
– fibre composite 298
– material parameter 68
– notch 119, 121, 411, 433
– polymer 263
– shaft 411, 433
– static 413, 435
– tube 413, 435
– with cracks 142–144

desktop effect 118
detachment
– dislocation 190, 192, 204, 371, 405
– fibre 309, 348
– particle 112, 129

determinant 457
deviatoric stress 87, 95, 410, 431
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diamond 16
– binding energy 17
– cross-linking density 28, 274
– crystal structure 21
– Young’s modulus 40, 55, 275

die 467
diffusion 14, 207, 219, 470
– at fibres 396
– dislocation pipe 392
– grain boundary 395, 396
– vacancy 196, 385, 389, 391–394, 402
– volume 392

diffusion coefficient 208, 391, 471
– grain boundary diffusion 396
– iron 402

diffusion constant 208, 391
– vacancy diffusion 391

diffusion creep 385, 393–396, 398, 402
diffusion distance 208, 394
diffusion-less phase transformation

219, 252
diffusivity 208
dimensioning of components see

design
dimple fracture 112, 162, 344, see also

shear fracture
din 50 125 (standard) 68
dipole bond see bond – dipole
dipole moment 20
direct strain see normal strain
direct stress see normal stress
direction (crystallographic) 461
direction dependence (of material

properties) see anisotropy,
isotropy, elasticity – orientation
dependence

directional solidification 57, 59, 403
discrete fibre see fibre – short
dislocation 15, 166–213
– annihilation 185–187, 191, 203,

371, 388
– athermal obstacle 190–193
– attraction 184, 186, 187, 191, 197
– Burgers circuit 166–168
– Burgers vector 166–168, 170, 172,

184, 186, 188, 190, 197, 415
– ceramic 229
– climb 175, 187, 192, 196, 389, 405
– cross slip 174, 192, 196

dislocation. . .
– cutting a dislocation see disloca-

tion – intersection
– cutting a particle 211–213, 218,

371
– cutting an obstacle 191, 199,

211–213, 218, 371
– detachment 190, 192, 204, 371, 405
– edge see edge dislocation
– energie barrier see also dislocation

– obstacle
– energy 170, 184, 185, 189, 190, 192,

193, 197, 203
– force 187–189, see also dislocation

line tension, dislocation – shear
stress, dislocation – interac-
tion, dislocation – obstacle,
strengthening mechanisms –
metal

– forest 197, see also cutting
– Frank-Read source 185, 198
– generation 185–187
– interaction 184–185, 197
– intersection 197, see also cutting
– jog 197
– kink 197
– line tension 405
– mixed 168, 169, 172
– movement 170–173, 174, 338, 341,

345, 371, 373, 402, 404
– – time-dependent 195
– multiplication 185–187, 198, 371
– obstacle 189–197, 404
– Orowan mechanism 190–193, 211,

213, 415, 438
– Peach-Koehler equation 188
– Peierls force 189, 195
– pile-up 200, 207, 373, 390, 401
– pinning 204, 207, 404
– Read source see dislocation –

Frank-Read source
– repulsion 184, 197
– screw see screw dislocation
– shear stress 170–173, 175,

178–182, 186–189, 193, 202
– slip direction see slip direction
– slip plane see slip plane
– slip system see slip system
– source 185–187
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dislocation. . .
– stress (effective) 189, 193, 194, 200
– stress field 168–170, 184, 200
– thermal obstacle 193–195
– time-dependent movement 195
– vibration 195

dislocation core diffusion 392
dislocation creep 388, 389, 398
dislocation density 185–187, 198–200,

203, 208, 210, 221, 321, 371, 392,
414, 415, 437

– creep 388
dislocation line 166–168, 172, 184
dislocation line tension 170, 184, 190,

204, 212
dislocation line vector 166
dislocation loop 172, 414, 437
disorder 467
dispersion bond see bond – van der

Waals
dispersion strengthening 209, 217, 248,

295, 298, see also precipitation
hardening, particle strengthening

– ceramic 248, 295, 298
– creep 404
– metal 209, 217

dispersoid 218, 404
displacement see deformation, strain,

rigid-body displacement
displacement-controlled experiment

see experiment – displacement-
controlled, experiment – strain-
controlled

distortion see strain, deformation,
elastic lattice distortion

distortional strain energy criterion see
yield criterion – Mises

divergence 473, 476
dna 328
dog bone 156
dot product see tensor – contraction
draw the temper see hardening
drawing 165
Drucker’s postulate 95
dual-phase steel 210
ductile-brittle transition 117, 196
ductile fracture see shear fracture,

dimple fracture
ductile particle (ceramic) 255

ductility 71, 117, see also fracture
strain

– fracture 114
– grain boundary strengthening 202
– hardening (steel) 222
– polymer 263, 275, 284, 290–292
– solid solution 206
– steel 222
– work hardening 199

duromer 26, 28, 257, 299, 346, 347, 419
– elasticity 271, 273, 275
– glass transition temperature 260–

263, 265, 268, 270, 272, 273, 275,
284–286

– matrix 297, 299, 305, 318–320
– service temperature 284–289

duroplastic see duromer

edge dislocation 166, 167, see also
dislocation

– climb 175, 187, 192, 196, 389
effective stress 189, 193, 194, 200
eigenvalue 458–459
eigenvector 458
Einstein summation convention 453
elastic constant see Young’s modulus,

shear modulus, Poisson’s ratio,
elasticity tensor, Lamé’s elastic
constants

elastic damping 264, 418, 443, see also
hysteresis

elastic distortion see elastic lattice
distortion

elastic energy see energy – elastic
elastic lattice distortion 166–168, 170,

203, 204, 206, 212, 220, 221
– martensite 221, 222

elastic modulus see Young’s modulus
elastic-perfectly plastic 86, 99, see also

perfectly plastic
elastic-plastic fracture mechanics see

fracture mechanics – elastic-plastic
elastic potential 37, 43, 45, 61, 274
elastic strain 39–57, 69, 71–73, 75, 135,

151, 155, 158, 159
– amplitude 361

elastic strain energy see elasticity –
energy
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elasticity 31–62, see also Hooke’s law
– anisotropy 50–59, 302–303
– aragonite 327
– bulk modulus 408, 425
– composite 300–303, 320, 419, 445
– damping 264, 418, 443, see also

hysteresis
– direction dependence see elasticity

– orientation dependence
– duromer 271, 273
– elastomer 271, 273, 275
– energy 42–43, 134–142, 274, 409,

428, 475, 477, 478
– energy elasticity 270–272
– entropy 272–273
– hyper- 274
– linear 39–57, 120, 122, 131–158,

see also Hooke’s law, fracture
mechanics – linear-elastic

– nacre 327
– orientation dependence 50–59,

302–303
– polymer 269–274, 289–290
– potential 37, 43, 45, 61, 274
– pseudo- 222
– shape memory alloy 222
– stored energy see elasticity –

energy
– super- 222
– temperature dependence 60–62,

270, 271, 291
– thermoplastic 270, 271
– visco- 263–269, 271, 319, 320, 346,

347, 417, 418, 441, 443
– wood 326

elasticity matrix 45–54, 408, see also
elasticity tensor

elasticity tensor 43, 51, 408, 426, see
also elasticity matrix

– symmetry 44, 45
elastomer 26, 28, 257, 346
– elasticity 271, 273, 275
– glass transition temperature 260–

263, 265, 268, 270, 273, 275,
284–286

– oxidation 293
– service temperature 284–289

electrical conductivity 7
electrical field 474

electrical potential drop method 158
electrochemical series 206
electromotive force series see

electrochemical series
electron 1
electron affinity 4, 18
electron configuration 3
electron gas 7
electron shell 2–5, 19, see also orbital
electron volt 7
electrostatic attraction 18, see also

bond – ionic, bond – dipole
elongation (tensile test) 71, 73, see

also fracture strain, ductility
– without necking 70, 82, 199

embrittlement 206, 388
– grain boundary 115
– hydrogen 117, 151
– polymer 293

en 10 002-1 (standard) 69–71
en 485 (standard) 214
enamel 22
endurance limit see fatigue limit,

fatigue strength
energy see also activation energy,

binding energy
– conservation 466
– dissipation 72, 95, 110, 189, 274,

339, 418, 444, see also crack
propagation – energy

– elastic 42–43, 134–142, 274, 409,
428, 475, 477, 478

– free 466–468
– internal 467
– plastic 72, 95, see also energy –

dissipation
– surface see surface energy
– thermal 61, 193, 259, 260, 262, 392,

465, see also thermal activation,
activation energy

– thermodynamics 466
energy barrier 197, 267, see also

thermal activation
energy elasticity 270–272
energy-momentum tensor 475–477,

481
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energy release rate 134–142, 145, 152,
159, 160, 164, 478

– critical 136, 138, 139, 141, 145,
152, 159

entanglement see polymer – entangle-
ment, chain molecule

enthalpy (free) 466–468
enthalpy of formation see activation

energy, vacancy – enthalpy of
formation

entropy 272, 466–469
entropy elasticity 272–273
environmental effect see polymer

– environmental effect, fibre –
environmental effect, oxidation,
corrosion

epfm see fracture mechanics –
elastic-plastic

epoxy resin 40, 319
equilibrium (thermal) 185, 391, 465
equivalent plastic strain 64, 80, 98
equivalent plastic strain rate 98
equivalent stress 84, 116, 123, 142, 196
– Mises 91, 104
– Tresca 88

etching 14
ethylene 24
eutectic alloy 471
eV see electron volt
exclusion principle 2
experiment
– compressive test 93, 370, 411
– displacement-controlled 148, 154,

157, 163
– fatigue 339, 357–360, 364, 366, 369,

371, 375
– fracture mechanics 148, 152–158,

163–164
– hardness 107–110
– indentation test 108–110
– non-destructive 144, 349
– proof test 246–248
– rebound test 110
– relaxation 421, 441
– retardation 264, 265, 421, 441
– scratch test 108
– shear 92
– strain-controlled 71, 372
– stress-controlled 346, 357–366, 372

experiment. . .
– tensile test 68–81, 125–128, 370
– ultrasonic 144, 349
– Weibull statistics 243–245

extrusion 339, 340
Eyring plot 269, 418, 444

fabric 297
face-centred cubic crystal see cubic

crystal – face-centred
fad see failure-assessment diagram
failure see fracture, fatigue, creep,

plasticity, damage
failure-assessment diagram 143, 362,

413, 435
failure cycle number see number of

cycles to failure
failure probability see probability of

failure, Weibull statistics
failure strain see fracture strain
fatigue 333–382
– aluminium 419, 447
– arrest marks see fatigue – beach

marks
– Basquin equation 360, 361, see

also Coffin-Manson-Basquin
equation

– beach marks 337, 343
– ceramic 345, 362–364
– clamshell marks see fatigue –

beach marks
– Coffin-Manson-Basquin equation

362
– Coffin-Manson equation 361
– composite 347–349, 365–366
– crack
– – initiation 337–342, 344, 347, 348,

360, 362, 374
– crack closure 343, 350, 352, 357
– crack growth see fatigue – crack

propagation
– crack-growth curve 353–356
– crack opening 343, 350, 352, 357
– crack propagation 338, 340, 342–

344, 347, 349–357, 374, 419,
447

– cycle 335, see also fatigue – number
of cycles



www.manaraa.com

512 Index

fatigue. . .
– cycle number see fatigue – number

of cycles
– cyclic relaxation 372–373
– cyclic stress-strain diagram

369–373
– damage 337–349, 355, 366, 368–369
– design 333, 349, 374, 419, 447
– endurance limit see fatigue limit,

fatigue strength
– experiment 339, 357–360, 364, 366,

369, 371, 375
– extrusion 339, 340
– failure cycle number see fatigue –

number of cycles to failure
– failure mechanisms 337–349
– final fracture 338, 344, 352, 354
– fracture 337–345
– fracture mechanics 342–345,

349–357, 373–375, 380–382
– fracture surface 337–338, 343–345
– frequency 335, 346, 364
– fully reversed stress 336, 362, 365,

379, 380
– Goodman equation 367
– Haigh’s fatigue strength diagram

366, 368
– hcf see fatigue – high-cycle
– heat generation 346
– high-cycle 358, 359, 361
– incremental-step test 371
– initial crack 341, 344, 356
– intrusion 339, 340
– Kitagawa diagram 373–375, 376
– lcf see fatigue – low-cycle
– life time see fatigue – number of

cycles to failure
– limit see fatigue limit, fatigue

strength
– load frequency 335, 346, 364
– loading 333
– low-cycle 358, 359, 361
– Manson-Coffin equation 361
– maximum stress 334
– mean strain 372
– mean stress 334, 366, 372
– metal 337–345, 360–362
– microcrack 340, 345, 347–350, 356,

360, 374

fatigue. . .
– microstructural change 371
– Miner’s rule 368–369, 420, 448
– minimum stress 334
– notch 375–382
– notch support factor 378–379
– number of cycles 335, 345, 355–366
– number of cycles to failure 346,

356–366, 368–369, 419, 447, see
also fatigue – S-N diagram

– Palmgren-Miner rule 368–369,
420, 448

– Paris law 353, 355, 419, 447
– period 335
– polymer 346–347, 364
– propagation stage I 338–342
– propagation stage II 341–344
– propagation stage III see fatigue –

final fracture
– pulsating stress 335
– R ratio 335, 336, 337, 350, 352–354,

356, 357, 366
– ratchetting 372–373
– relaxation 372–373
– reversed stress 335, 336, 362, 365,

379, 380
– roughening of a surface see fatigue

– extrusion, fatigue – intrusion
– S-N diagram 357–366, 368, 420,

448
– simulation 372
– Smith’s fatigue strength diagram

366, 367
– static 345
– strain-cycle diagram 360, 361
– strain ratio 336, 357
– strength see fatigue strength
– stress amplitude 334, 419, 447
– stress-cycle diagram see fatigue –

S-N diagram
– stress range 335, 419, 447
– striations 343, 344
– thermal 346, 364
– ultimate number of cycles see

fatigue – limiting number of
cycles

– ultra-high-cycle 360
– very-high-cycle 360
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fatigue. . .
– Wöhler diagram see fatigue – S-N

diagram
– zero-to-compression stress 336
– zero-to-tension stress 336

fatigue crack see fatigue – crack
propagation

fatigue-crack-growth threshold
350–352, 355, 356

fatigue ductility coefficient 361
fatigue ductility exponent 361
fatigue fracture see fatigue – fracture,

fatigue – crack propagation
fatigue limit 333, 358, see also fatigue

strength
– aluminium 380
– defects 373
– estimation 363
– mean stress 366–367

fatigue notch factor 375
fatigue strength 374, 379, see also

fatigue limit
– high-cycle fatigue 359
– low-cycle fatigue 359
– notch sensitivity 380–382
– notched specimen 375–382

fatigue strength coefficient 360
fatigue strength diagram 366–367
– Haigh 366, 368
– Smith 366, 367

fatigue strength exponent 360
fatigue strength reduction factor see

fatigue notch factor
fatigue striations 343, 344
fcc see cubic crystal – face-centred
Fe3C see carbide
ferrite 206, 210, 218, 225, 386
– hardening 206
– self-diffusion 402
– Young’s modulus 40, 55, 56

ferritic steel see ferrite, steel, iron
ferroconcrete 229, 298
Ferry equation see Williams-Landel-

Ferry equation
fibre 42, 53, 54, 270, 281, 283, 287–288,

296–298, 303, 347, 365, 395, 419,
445, 446, see also composite

– aluminium oxide 316, 322, 323
– aramid see aramid

fibre. . .
– aspect ratio 308, 395
– buckling 313, 318, 319, 326, 348
– carbon 303, 316–319, 320, 322,

323, 348, 365, 419, 446
– chopped see fibre – short
– configuration 297–298
– continuous 296–297, 348, 419, 446
– critical length 308–312, 321, 447
– defect 309, 312, 318
– defect size 296, 303
– detachment 309, 348
– diameter 296, 303, 308, 312, 314,

318
– discrete see fibre – short
– environmental effect 320
– fracture 305, 308–312, 447
– fracture strain 316, 318, 320
– glass 296, 316, 319, 320
– interface 306, 309, 348, 349, 396
– interfacial shear stress 306–312,

321, 323
– kinking 314, 318, 319
– load transfer 305–312, 347, 395
– long 296–297, 312, 315–320, 322
– microstructure 316–318
– Nicalon 324
– pan 318
– parallel load 301, 303, 445
– perpendicular load 301, 419, 445
– polyethylene 287, 316, 319
– polymer 270, 287–288, 319, 320
– properties 316
– pull-out 310, 311, 323, 328
– short 296, 297, 320–322, 419
– silicon carbide 316, 322, 323
– surface 324
– temperature resistance 324
– tensile strength 316, 317
– uniaxial 297, 300–305
– viscoelasticity 319, 320
– Weibull statistics 312
– whisker 166, 185, 322–324

fibre bundle 280, 300, 330
fibre composite see composite, fibre
fibre reinforced composite see

composite, fibre
fibril
– craze 276, 277



www.manaraa.com

514 Index

fibril. . .
– micro- 282, 325

fibrous composite see composite, fibre
fibrous fracture see dimple fracture
Fick’s law 391
field theory 476
final fracture (fatigue) 338, 344, 352,

354, see also fatigue, overload
fracture

Fisher effect see short-range order
interaction

flow curve 184, 199, 208, 372, see also
stress-strain diagram, flow stress

flow fracture mechanics see fracture
mechanics – elastic-plastic

flow rule 93–97, 103
flow stress 74, 88, 90, see also yield

strength, flow curve, stress-strain
diagram

fluctuating stress see pulsating stress
fluorine 4, 286
fluorite 22
force-controlled experiment see

experiment – stress-controlled
force-displacement diagram see also

stress-strain diagram
forced rupture see overload fracture
forest dislocation 197, see also

dislocation – intersection
forging 165, 338
formation enthalpy see activation

energy, vacancy – enthalpy of
formation

forming 165
four-parameter model 265, 269, see

also spring-and-dashpot model
fracture 110–118, see also fracture

mechanics, overload fracture, final
fracture, crack, fatigue – crack
propagation, cleavage fracture

– cleavage see cleavage fracture
– corrosion induced see corrosion,

intercrystalline corrosion, stress
corrosion cracking

– creep 384, 396, 400–401
– critical energy release rate 136,

138, 139, 141, 145, 152, 159
– delayed 118, 150
– ductile see shear fracture

fracture. . .
– energy release rate 134–142, 145,

152, 159, 160, 164, 478
– fibrous see dimple fracture
– intercrystalline 14, 112, 115, 217,

400
– intergranular see fracture –

intercrystalline
– overload 111, 112, 344
– particle see particle – fracture
– polymer 278, 281, 293
– silky see dimple fracture
– transcrystalline 112, 115, 400
– transgranular see fracture –

transcrystalline
fracture criterion see fracture, fracture

mechanics, failure assessment
diagram, fatigue

fracture mechanics 129–164, 473–484
– critical energy release rate see

energy release rate – critical
– critical stress 134, 138, 146–148
– ct specimen 152, 163, 412, 434
– dog bone 156
– elastic-plastic 158–164, 473–484
– energy release rate see energy

release rate
– experiment 148, 152–158, 163–164
– failure-assessment diagram 143,

362, 413, 435
– fatigue 342–345, 349–357, 373–375,

380–382
– J integral 159–164, 473–484
– linear-elastic 131–158, 349
– mode 130–131, 134, 142, 229, 237,

340, 342, 350, 382, 413, 482
– plane strain 136, 138, 156
– plane stress 132, 136, 156
– pop-in 155
– statistics see Weibull statistics
– stress field 131–134, 309, 480
– stretch zone 162, 163
– three-point bending specimen 152

fracture strain 125, 200, 304–305, 320,
see also brittleness, ductility,
elongation (tensile test)

– fibre 316, 318
– polymer 278
– precipitation hardening 214
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fracture strain. . .
– silk 283
– solid solution 206

fracture stress see strength, tensile
strength, fracture mechanics

fracture surface see also crack surface
– cleavage see cleavage fracture
– dimples 112, see also dimple

fracture
– fatigue 343

fracture toughness 134, 138, 142, 143,
146, 147, 152, 154–158, 230, 344,
352, 412, 413, 434, 435

– aragonite 327
– ceramic 139, 144, 147, 248
– composite 308, 313, 323
– metal 139, 144, 147
– nacre 327
– polymer 139, 145

Frank-Read source 185, 198
free energy 466–468
free enthalpy 233, 466–468
free index 454
free volume 260, 262, 268, see also

specific volume
frictional stress 189
fully reversed stress 336, 362, 365, 379,

380

galvanic cell 206, 217
galvanisation 117
Garofalo equation 384
gas constant 392, 466
gauge length (tensile test) 69, 75–78
Gauss’ theorem 160, 473
geometry factor 139, 152, 356
– ct specimen 153
– Kitagawa diagram 374

germanium 16, 185
gfrp see glass-fibre reinforced

polymer
glass 22, 227, see also amorphous
– crack propagation 234–236
– cracking 151
– Young’s modulus 40

glass fibre 296, 316, 319, 320
glass-fibre reinforced polymer 40,

295, 316, 320, see also glass fibre,
composite

glass temperature see glass transition
temperature

glass transition temperature 26,
260–261, 263, 265, 268, 270, 272,
273, 275, 284–286, 291

– degree of polymerisation 262
– increasing 284–286

glassy phase 151, 229, 249, 250, 396
gliding see twinning, dislocation

– movement, chain molecule –
mobility, grain boundary sliding

glycin 282
gold 55, 56
Goodman equation 367
graft copolymer see copolymer
grain 14, see also microstructure,

grain size, grain boundary
– coarse 230
– elongated 402
– rod-shaped 250
– texture 54, 57, 403

grain boundary 14, 151, 207, 217, 231,
249

– crack propagation 341
– creep 393
– creep fracture 400
– embrittlement 115
– low-angle 184
– obstacle for dislocations 200
– recrystallisation 203
– triple point 396, 400, 401

grain boundary corrosion see
intercrystalline corrosion

grain boundary diffusion 395, 396
grain boundary sliding 396, 401, 406
grain boundary strengthening 200–

203, 221, 321, 344, 402, 415,
438

– ductility 202
grain size 57, 202, 210, 253, 338, 415,

438, see also grain boundary
strengthening

– composite 321
– crack propagation 349
– creep 394, 395, 400, 402
– fatigue 344
– setting 202

graphite 16, 210, 238, 316, 324, see also
carbon



www.manaraa.com

516 Index

graphite fibre see carbon fibre
green body 228, 249
Green’s strain tensor 67, 410, 431
Griffith crack 132

H+
2 molecule 4

Haigh’s fatigue strength diagram 366,
368

Hall-Petch equation 202, 415, 438
Halpin-Tsai equations 303
harden and temper see hardening
hardening 81, 97–103, 218–223, see

also strengthening mechanisms
– creep 388
– cyclic 339, 369
– isotropic 100–101
– kinematic 101–103
– linear 101
– perfectly plastic 81, 85, 86, 95, 99,

109, 210
– polymer 276
– steel 218–223

hardening exponent 83
hardening law 101, see also hardening
hardening parameter 98, 101, 102
hardness 107–110
Haversian system 330
hcf see high-cycle fatigue
hcp see hexagonal crystal – close

packed
hdpe see high-density polyethylene
heat treatment 203
– precipitation see ageing
– quenching 214, 215
– solution 215
– steel 222

hemicellulose 325
Herring creep see Nabarro-Herring

creep
hexagonal crystal 9, 10, 13, 21, 54, 178,

189, 250, 317, 407, 423
– close packed 10, 13, 21, 178, 189,

407, 423
– Miller-Bravais indices 462

high cristobalite 22
high-cycle fatigue 358, 359, 361
– fatigue strength diagram 366–367
– ultra- 360
– very- 360

high-cycle fatigue strength 359
high-density polyethylene 26, 289
high-impact polystyrene 292
hip see hot isostatic pressing
hips see high-impact polystyrene
homologous temperature 383, 385,

402
Hooke’s law 39–57
– anisotropy 50–59
– cubic crystal 50–53, 54
– hexagonal crystal 54
– isotropic 46–50, 54
– monoclinic crystal 54
– orthorhombic crystal 53, 54
– orthotropic 53, 54
– shear 39
– tetragonal crystal 54
– transversally isotropic 54
– triclinic crystal 54
– uniaxial 39
– Voigt notation 44, 427

hot isostatic pressing 228, 249, 338
hot pressing 228
Hubble Space Telescope 322
humidity see polymer – environmental

effect, fibre – environmental effect
hydrogen 2, 4, 117, 151
hydrogen bond see bond – hydrogen
hydrostatic stress see stress –

hydrostatic
hydroxyapatite 255, 328, 329
hyperelasticity 274
hysteresis 319, 339, 340, 345–347, 372,

373, 418, 443

implant 255, 330
in-series connection see composite –

in-series connection
incipient crack see initial crack, micro-

crack, crack, fracture mechanics,
fatigue

incoherent particle 15, 16, 206, 216,
218

incompressibility 39, 87, 182
incremental-step test 371
indentation test 108–110
index see tensor – index notation,

Miller indices, Miller-Bravais
indices
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inert gas see noble gas
inert strength 235, 417
initial crack 129, 130, 144, 146, 152,

153, 163, 227, 229, 248, 341, 344,
356, 434, see also microcrack,
crack, fracture mechanics, fatigue,
ceramic

– measurement 155
initial nucleus 215
injection moulding 228, 286, 287, 297,

299, 321
inner product see tensor – contraction
interaction (atomic) 37, 61, 407, 424,

see also bond, binding force
interaction (dislocations) see disloca-

tion – interaction
interaction force see bond, interaction

(atomic), binding force
intercrystalline corrosion 206, 217
intercrystalline fracture 14, 112, 115,

217, 400
interest calculation 410, 431
interface see fibre – interface, grain

boundary
interface energy 215, 469, see also

surface energy
interfacial shear stress (fibre) 306–312,

321, 323
intergranular corrosion see intercrys-

talline corrosion
intergranular fracture see intercrys-

talline fracture
internal crack 132, 135, 139
internal energy 467
internal plasticisation 291
internal stress 292
intersection of dislocations 197
interstitial atom 498
interstitial solid solution 204–207, 221,

403, see also solid solution
intrusion 339, 340
invariant see principle invariant,

eigenvalue
ion bond see bond – ion
ionisation energy 3
iron 2, 5, 204, 218, see also steel,

ferrite, austenite, cast iron
– self-diffusion 402
– service temperature 386

iron. . .
– Young’s modulus 55, 56

iron carbide see carbide, cementite
iron-carbon phase diagram 219
irreversible deformation see plasticity,

creep
iso 12737 (standard) 155, 156
iso 527-1 (standard) 70
isotactic see tacticity
isotropy 39, 46–50, 54, 57, 83, 182
– elasticity see Hooke’s law –

isotrope
– hardening see hardening – isotrope

J integral 159–164, 473–484
– crack tip 479
– interpretation 160, 478, 480, 482
– measurement 163

jog 197
JR crack-growth resistance 161

K shell see electron shell
Kelvin model 264, 267, 417, 441
kevlar see aramid
kinematic backstress 101
kinematic hardening see hardening –

kinematic
kink 197
Kitagawa diagram 373–375, 376
Koehler equation see Peach-Koehler

equation
Kronecker delta 457

L shell see electron shell
Lamé’s elastic constants 47
laminate 297
Landel-Ferry equation see Williams-

Landel-Ferry equation
Larson-Miller parameter 386, 387, 390,

421, 449
lateral contraction see transversal

contraction
lattice see crystal
lattice constant 9, 12, 15, 18, 404, 412,

414, 415, 425, 434, see also atomic
distance, bond – length

lattice defect see vacancy, dislocation,
grain boundary, solid solution

laws of thermodynamics 466
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lcf see low-cycle fatigue
ldpe see low-density polyethylene
Le-Châtelier effect see Portevin-Le-

Châtelier effect
lead 421, 449
lefm see fracture mechanics –

linear-elastic
lever rule 470
LiF see lithium fluoride
life time see fatigue, subcritical crack

propagation, creep, creep rupture
time

lignin 325
limiting number of cycles 358
line tension 170, 184, 190, 204, 212, 405
line vector 166
linear-elastic fracture mechanics see

fracture mechanics – linear-elastic
linear elasticity see elasticity – linear
liquid crystal 288
lithium 5
lithium fluoride 18
load see also stress
– creep 383
– cyclic 213, 333, 334, see also fatigue
– fluctuating see load – pulsatingpul-

sating 335
– quasi-static 68
– reversed see reversed stress
– static 383

load-displacement curve 154, 163
load frequency 346, 364
load transfer see metal – load transfer,

ceramic – load transfer, fibre – load
transfer, composite – load transfer

long crack see crack, macrocrack,
fracture mechanics

long fibre see fibre – long
long-range order 8, 22
longitudinal stress 78, 127, 413
low-angle grain boundary 184
low-cycle fatigue 358, 359, 361
low-cycle fatigue strength 359
low-density polyethylene 26, 289
lower yield strength 72, 73, 203, 207
Lüders band 72, 207
lys see lower yield strength

M shell see electron shell

macrocrack 341, 349, 356, 373, see also
crack, fracture mechanics

macromolecule see chain molecule
magnesia see magnesium oxide
magnesium 5, 40, 55, 192, 322, 386, 406
magnesium oxide 16, 40, 55, 229
Manson-Coffin equation 361
martensite 210, 220
– elastic distortion 221, 222
– microstructure 221
– needles 221
– residual stress 220
– shape memory alloy 222

martensitic phase transformation 219,
252

Masing behaviour 102
mass polymer see copolymer
material failure see fracture, plasticity,

fatigue, creep
material stretch tensor see right

stretch tensor
matrix see also composite, particle

strengthening, solid solution
– ceramic 230, 232, 251
– composite 295, 299–300, 306
– metal 209, 210, 215, 216, 218

matrix-dominated failure 315
matrix of components see component

matrix
maximum shear stress criterion see

yield criterion – Tresca
maximum stress (fatigue) 334
mean strain (fatigue) 372
mean stress (fatigue) 334, 366, 372
mechanical behaviour (deformation

modes) 31
mechanical twinning 223
melt (undercooled) see amorphous,

glass
melting of bonds 260
melting temperature 61, 385, 469, 471
– ceramic 7, 60, 227, 383
– enamel 22
– fibre 322
– metal 7, 60, 383
– polymer 26, 261–263, 270,

284–286, 287
meniscus instability 277
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metal 5–15, 165–225, 337–345
– amorphous 23
– binding energy 7
– body-centred cubic 177, 195
– bond 5–7
– compressive strength 366
– deformation 165–225
– face-centred cubic 175
– fatigue 337–345, 360–362, see also

fatigue
– fracture toughness 139, 144, 147
– hexagonal 178
– load transfer 209
– microcrack 340
– microstructure 14, 203, 209, 210,

215, 221, 298
– plasticity 69, 70, 72–81, 84–107,

165–225
– polycrystalline 14
– service temperature 60, 385, 388,

405, 421
– slip direction 173–184
– slip plane 173–184, 193
– slip system 173–184, 193, 200
– strength 69, 70, 72–81, 84–92,

110–118, 165–225
– strength (theoretical) 165
– strengthening mechanisms 198–

223
– stress-strain diagram 70
– structure 5–15
– temperature dependence 195
– tensile strength 70
– tensile test 70
– yield criterion 86–92, 178, 182–184
– yield strength 69, 72, 189, 192, 195,

200, 206, 214
– Young’s modulus 40

metal matrix composite 299–300, 306,
313, 321–323

– damage 348
– fatigue 348, 355, 365
– microstructure 304

metastable state 219, 232, 234, 252,
316, 403, 471

methyl group 259, 285
MgO see magnesium oxide
microcrack 79, 112, 117, 129, 231–232,

233, 234, 251–252, 255, 340, 345,

347–350, 356, 360, 374, 400, see
also initial crack, crack

microfibril 282, 325
microhardness 108
microscopically brittle fracture see

cleavage fracture
microstructure 14, see also grain,

grain boundary, grain size,
polycrystal

– casting 338
– ceramic 23, 230, 231, 249, 250,

252–254
– coarse-grained 230
– coarse two-phase 209, 298
– composite 304
– creep 383, 389, 403
– fatigue 371
– fibre 316–318
– martensite 221
– metal 14, 203, 209, 210, 215, 221,

298
– metal matrix composite 304
– polymer 262, 277, 280
– silk 283
– single phase 469
– texture 54, 57, 318, 403
– two-phase 209, 215
– zirconia-toughened alumina 254

Miller-Bravais indices 462
Miller indices 13, 51, 461
Miller parameter see Larson-Miller

parameter
Miner’s rule 368–369, 420, 448
minimum stress (fatigue) 334
miscibility gap 214, 215, 469
Mises see yield criterion – Mises,

equivalent stress – Mises
mixed crystal see solid solution
mmc see metal matrix composite
mode (fracture mechanics) see

fracture mechanics – mode
modulus interaction 204, 230, 232, 251,

255
modulus of rigidity see shear modulus
Mohr’s circle 34, 88, 115, 116, 128, 181,

196
molecule chain see chain molecule
mollusc 327
molybdenum 206, 403, 405
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monoclinic crystal 9, 10, 54, 252
monomer 24, 25
mother-of-pearl 250, 327–328
mullite 16, 151
multiaxial stress 42, 43, 66, 68, 78, 83,

84, 116, 123, 127, 279, 305, 348

Nabarro force see Peierls force
Nabarro-Herring creep 394
NaCl see sodium chloride
nacre 250, 327–328
natural ageing 214–216
neck-down see necking
necking 70–83, 199
net-section stress 120, 124, 376
Neuber’s rule 122–125, 411, 433
neutron 2
Nicalon fibre 324
nickel 5, 41, 59, 205, 222, 385
– γ′ phase 389, 404
– creep 389, 404, 421, 450
– creep rupture strength 406
– fatigue 355
– service temperature 386
– solid solution strengthening 403
– yield strength 192
– Young’s modulus 40, 55, 56

nickel bronze 41
nitriding 341
nitrogen in steel 205, 341
noble gas 4, 19
nominal strain see strain – nominal
nominal stress see stress – nominal
normal strain 35–36
normal stress 32, 33, 49, 53, 55, 426
normal vector 473
Norton creep 385, 392, 404, 421, 450
notch 119–128, 143, 375–382
– crack 380–382
– design 119, 121, 411, 433
– fatigue 338, 340, 359, 375–382
– fatigue notch factor see fatigue

notch factor
– geometry 121, 126, 376, 379
– maximum stress 120
– Mohr’s circle 128
– net-section stress 120, 124, 376
– Neuber’s rule 122–125, 411, 433
– nominal stress 121, 126, 140

notch. . .
– stiffness 127
– stress concentration factor see

stress concentration factor
– stress gradient 376
– stress state 127
– stress trajectory 119
– tensile test 125–128
– yielding 123, 125, 128

notch root 119, 375, 377–379, 411, 433
notch support factor 378–379
notched bar impact bending test 116
nucleation 206, 216, 468
nucleation barrier 206, 216, 232, 234,

401
nucleus
– crystallisation 14
– grain formation 203

nucleus (atomic) 1
number of cycles 335, 345, 355–366,

see also fatigue, number of cycles
to failure, S-N diagram

number of cycles to failure 346,
356–366, 368–369, 419, 447, see
also S-N diagram

Nylon see polyamide

obstacle see also dislocation – obstacle
– activation volume 195
– distance 192, 205
– energy 192, 194
– force 190, 212

orange peel 208
orbital 2–5, 37
orientation dependence (of material

properties) see anisotropy,
isotropy, elasticity – orientation
dependence

Orowan mechanism 190–193, 211,
213, 415, 438

orthorhombic crystal 8–10, 53–54
orthotropy 53–54, 303
osteoblast 330
osteoclast 330
osteocyte 330
osteon 330
overageing 213
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overload fracture 111, 112, 344, see
also shear fracture, cleavage
fracture

oversaturation 215, 216, 221
oxide layer 217, 339
oxygen 2, 19, 20

pa see polyamide
packing of spheres 13, 407, 423, see

also close-packed structure
Palmgren-Miner rule 368–369, 420,

448
pan fibre 318
parabolically modified yield criterion

see yield criterion – parabolically
modified

parallel connection see composite –
parallel connection

Paris law 353, 355, 419, 447
partially stabilised zirconium oxide

see zirconium oxide – partially
stabilised

particle 111, 129, 192
– ceramic see dispersion-strenthened

ceramic
– coherent see coherent particle
– detachment 112, 129
– fracture 111, 255
– incoherent see incoherent particle
– semi-coherent see semi-coherent

particle
particle coarsening 217
particle distance 190, 199, 211, 212,

415, 438
particle strengthening 209–218, 230,

249, 252, 255, 295, 298, 415, 438,
see also precipitation hardening,
dispersion strengthening, Orowan
mechanism

path integral 479
Pauli exclusion principle 2
pc see polycarbonate
pe see polyethylene
Peach-Koehler equation 188
peek see polyetheretherketone
Peierls force 189, 195
Peierls-Nabarro force 189, 195
perfectly plastic 81, 85, 86, 95, 99, 109,

210

period see fatigue – period
periodic system of the elements 6
pet see polyethyleneterephtalate
Petch equation see Hall-Petch

equation
phase 209, 215, 469
phase diagram 468–472
– aluminium-copper 214
– complete solubility 471
– eutectic 471, 472
– iron-carbon 219
– lever rule 470
– miscibility gap 469, 470
– zirconium oxide-yttrium oxide 253

phase transformation 230, 468–472
– diffusion-less 219, 252
– martensitic 219, 252
– reversible 222
– speed 219
– stress-induced 232, 252, 345

phase transition see phase transforma-
tion

phenylpropanol 325
pi see polyimide
pitch fibre 318
plane (crystallographic) 461, see also

dislocation – slip plane, lattice,
Miller indices

plane strain 47, 136, 138, 156, 170
plane stress 85, 88, 92, 93, 132, 136,

156, 410
plastic see polymer
plastic collapse 143
plastic energy see energy – plastic
plastic flow limit see yield strength,

stress-strain diagram, flow stress
plastic strain 70, 72, 97–108, 125, 128,

276, 345
– amplitude 361
– cyclic 373
– equivalent 64, 80, 98
– tensile test 69

plastic strain increment 94
plastic strain rate 93–103, 105, see also

strain rate, creep rate
plasticiser 228, 291, 292
plasticity 31, 63–107, 165–225,

274–284
– composite 303–305, 312–313
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plasticity. . .
– crack tip 139, 143, 145, 147, 154,

156, 158, 162–163, 342, 481, see
also crack propagation – energy

– deformation 484
– metal 7, 69, 70, 72–81, 84–107,

165–225
– notch root 123, 125, 128
– polymer 70, 92–93, 269, 274–284
– thermoplastic see plasticity –

polymer
– time dependent see creep,

viscoplasticity
– visco- 63, 263, 265, 266, 269, 346,

383–406, see also creep
plasticity theory 83–107
– flow rule 93–97, 103
– hardening law 101
– yield criterion 84–93, 96, 99, 100,

102–104, 116, 128, 142, 279, 410,
411, 413, 431, 432

platinum 255
plc see Portevin-Le-Châtelier effect
Plexiglas see polymethylmethacrylate
plywood 326
pmc see polymer matrix composite
pmma see polymethylmethacrylate
Poisson’s ratio 39, 46, 51, 87, 408,

426, see also elasticity, Young’s
modulus, shear modulus, Hooke’s
law

– negative 408, 426
– plastic 87

Poldi hardness tester 110
polyacetal 27, 364, 365
polyacrylonitrile 27, 318
polyamide 25–27, 282, 286, 290, 292,

347
– aromatic see aramid
– fatigue 365
– Young’s modulus 40

polybutadiene 26, 27, 291, 293
polybutadiene styrene 291
polycarbonate 26, 27, 145, 269, 290,

347
polycrystal 55, 57, 59, 83, 182, 202, 223
– ceramic 22, 254
– creep 393–396, 400, 403, 406
– metal 14, 83, 84, 182–184, 202, 223

polycrystal. . .
– yield criterion 182–184

polydimethylsiloxane 25, 27
polyester 26, 27, 319
– composite 419, 446
– Young’s modulus 40

polyetheretherketone 27, 319
polyethylene 24, 26, 27, 258, 285–287,

290, 316, 319, 347
– chain length 407, 424
– critical crack length 145
– fatigue 365
– high-density 26, 289
– low-density 26, 289
– relaxation 259
– stress-strain diagram 73
– Young’s modulus 40

polyethyleneterephtalate 26, 27, 290,
347

polyimide 26, 27, 285
polymer 23–29, 257–293, 346–347,

355, 364, see also thermoplas-
tic, elastomer, duromer, chain
molecule

– amorphous 25, 26, 257, 260, 269,
270, 275, see thermoplastic –
amorphous, elastomer, duromer

– bond strength 286
– branched 289
– chain rotation see chain molecule –

rotation
– chemistry 24
– compressive strength 92, 93, 278
– copolymer 290–293, 298, 347
– crack see polymer – fracture,

polymer – craze
– – initiation 276, 278, 281, 291
– cracking 151
– craze 276, 277, 285, 292, 347
– creep 269
– cross-link 28, 273, 319
– cross-linking density 28, 274
– crystallinity 287–289
– decomposition 263
– density 290
– directed 270
– drawn 280
– ductility 263, 275, 284, 290–292, see

also polymer – plasticity
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polymer. . .
– elasticity 269–274, 289–290
– embrittlement 293
– energy elasticity 270–272
– entanglement 25, 272, 273, see also

chain moloecule
– entropy elasticity 272–273
– environmental effect 151, 292–293,

319, 320
– fatigue 346–347, 355, 364
– fibre see fibre – polymer
– fracture 117, 278, 281, 293
– fracture toughness 139, 145
– glass temperature see glass

transition temperature
– glass transition temperature 260–

262, 265, 268, 270, 272, 273, 275,
284–286, see glass transition
temperature

– hardening 276
– isochrone 265, 266
– melting temperature 261–263,

270, 284–286, 287
– microcrack 347, see also polymer –

craze
– microstructure 262, 277, 280
– physical properties 257
– plasticity 70, 92–93, 269, 274–284
– reaction of formation 24
– secondary transition 271, see also

relaxation process
– semi-crystalline 28, 261–263, 273,

281, 284, 286–290, 347
– service temperature 284–289
– shear band 278
– side group 285
– softening 276, 280
– solvent 292–293
– spherulite 29
– strength 70, 72, 92–93, 110–118,

263, 265, 274–284, 289–290
– strengthening mechanisms 289–

292
– stress-strain diagram 70, 72, 265,

266, 276, 280
– structure 23–29
– swelling 292, 320
– tacticity 288–289

polymer. . .
– temperature dependence 265, 270,

271, 284, 291
– temperature resistance 284–289
– tensile strength 70, 72, 92, 93, 290
– tensile test 70, 266
– thermal stability see polymer –

temperature resistance
– transition (secondary) 271, see also

relaxation process
– tunnel 261, 285
– viscoelasticity see viscoelasticity
– viscoplasticity see viscoplasticity
– yield criterion 92–93, 279
– yield strength 72, 92, 263, 265, 279,

280
– Young’s modulus 290

polymer matrix composite 299, 306,
313, 315–321

– damage 348
– fatigue 348, 355, 365

polymerisation 24
– degree of 24, 25, 262, 263, 293, 407,

424
polymethylmethacrylate 26, 27, 151,

259, 290, 292, 347
– critical crack length 145
– isochrone 265
– relaxation 259
– stress-strain diagram 73
– Young’s modulus 40

polyoxymethylene see polyacetal
polypropylene 26, 27, 40, 285, 289, 290,

319, 347
– fatigue 365

polystyrene 25–27, 285, 291, 293, 347
– high-impact 292

polysulfone 27, 365
polytetrafluor ethylene 26, 27, 285, 287
polyvinyl chloride 25–27, 286, 288–290,

292, 293
– fatigue 365

pop-in 155
porcelain 16, 145, 151
pore 400
porosity 229, 249, 400
Portevin-Le-Châtelier effect 207, 208
postage metre machine 419
potassium 405
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potential 37, see also energy, bond,
binding energy

– elastic 37, 43, 45, 61, 274
potential drop method 158
potential well 37, 61, 62
power-law breakdown 392
power-law creep 385, 392, 404, 421, 450
pp see polypropylene
precipitate 111, 192, 206, 213, 215, 216,

371, 403, see also coherent particle,
incoherent particle, semi-coherent
particle

– γ′ 389, 404
– silicon 209
– tetragonal 254

precipitation hardening 192, 209,
211–217, 389, 406, 415, 438, see
also particle strengthening

– creep 403
– fatigue 371

precipitation heat treatment see
ageing

precipitation reaction 206, 214–216,
254, see also ageing

pressure see stress – hydrostatic
prestressed concrete 298
primary creep 383, 388–389
primitive unit cell 11
principal axis 33, 458
principal invariant 90, 458–459
principal strain 458
principal stress 33, 119, 341, 350, 410,

431, 458
prismatic slip system 178
probability density 243, 244, 246
probability of a thermal process 465,

see also thermal activation
probability of failure 236–244, 247, 416,

417, 439, 440, see also probability
of survival, Weibull statistics

– linearisation 237, 245
– volume dependence 238

probability of survival 238, 241, 416,
417, 439, 440, see also probability
of failure, Weibull statistics

process zone 147, 234, 310, see also
crack tip – plastic deformation

product (tensor) 453, 455
proof strength see yield strength

proof test 246–248, 363, 417, 440
propagation stage I (fatigue) 338–342
propagation stage II (fatigue) 341,

342–344
propagation stage III (fatigue) see

fatigue – final fracture
protein 282, 328
proton 1
ps see polystyrene
pse see periodic system of the

elements
pseudo-elasticity 222
psz see zirconium oxide – partially

stabilised
ptfe see polytetrafluor ethylene
pull-out (fibre) 310, 311, 323, 328
pulsating stress 335
pvc see polyvinyl chloride
pyramidal slip system 178

quartz glass see glass
quench and draw see hardening
quench and temper see hardening
quenching 214, 215, 221, 223

R curve see crack-growth resistance
curve

R ratio 335, 336, 337, 350, 352–354,
356, 357, 366

radial stress 78, 113, 123, 124, 127, 233,
413

radius (critical) 215
Ramberg-Osgood law 81, 371
rare gas see noble gas
ratchetting 372–373
rate formulation (plasticity) 95, see

also plasticity theorie
rbsn see silicon nitride – reaction

bonded
reaction force see constraining force
reaction of formation (polymer) 24
reaction wood 326
Read source see Frank-Read source
rebound test 110
recovery 187, 200, 203, 388
recrystallisation 57, 202, 338
reduced stress see deviatoric stress
reference volume 240
relative density 12, 407, 423
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relaxation 258, 264, 421, 441, see also
relaxation process, viscoelasticity,
viscoplasticity

– cyclic 372–373
relaxation experiment 421, 441
relaxation mechanism see relaxation

process
relaxation modulus 264, 268, 417, 441
relaxation process 257–260, 261, 266,

268, 271, 418, 444, see also creep,
viscoelasticity, viscoplasticity

relaxation time 264, 271, 273, 417, 441
residual stress 118, 230–233, 253
– ceramic 250, 252
– composite 300, 304
– fatigue 342
– martensite 220
– wood 326

resin see duromer, expoxy resin
resolved shear stress 178–183, 189
resonance vibration 333
resonant frequency 74
retardation 265, 421, 441, 449, 450
retardation experiment 264, 265, 421,

441
retardation modulus see creep

modulus
retardation time 264, 417, 441
reversed load see reversed stress
reversed stress 335, 336, 362, 365, 379,

380
reversible deformation see elasticity
rhenium 206, 403
rhombohedral crystal 9, 10, 252
ridge (tensile test) 112
right-hand rule 166
right stretch tensor 67
rigid-body displacement 34, 37
rigid-body rotation 34, 37, 67
rigid-perfectly plastic 99, 109, see also

perfectly plastic
rolling 199, 203, 338, 415, 437
rotation see rigid-body rotation,

bond – rotation, chain molecule –
rotation

roughening of a surface (fatigue) see
extrusion, intrusion

roving 297
rubber band 409, 428

rule of mixtures 301–305, 419, 445, 446
– isostrain 301, 303, 305, 445, 446
– isostress 302, 446

rupture strain (polymer) 72
rupture stress (polymer) 72
R curve behaviour 147

S-N diagram 357–366, 368, 420, 448
salt see sodium chloride
sandwich structure 299
scalar 452
scalar product see tensor – contraction
Schmid factor 180, 182
Schmid stress see resolved shear stress
scratch test 108
screw dislocation 167, see also

dislocation
– cross slip 174, 192, 196
– slip direction 174

secondary creep 383, 388–389, 392
secondary slip plane see slip plane –

secondary
secondary transition 271, see also

relaxation process
selenium 20
self-diffusion 385, 402
semi-coherent particle 15, 192, 206
semi-crystalline polymer 28, 261–263,

273, 281, 284, 286–290, 347
semi-metal 6, 7
sensitised 217
serial connection see composite –

in-series connection
serine 282
service temperature see also melting

temperature, glass transistion
temperature, creep

– ceramic 60, 385
– composite 299, 319
– metal 60, 385, 386, 388, 405, 421
– polymer 284–289

shaft 121, 411, 433
shape memory alloy 222
shear 35, 36, see also strain
shear band 278, 347
shear-face fracture 79
shear flow stress see yield strength,

flow stress
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shear fracture 111–114, 131, 162, see
also dimple fracture

shear modulus 39, 46, 51, see also
elasticity, Young’s modulus,
Poisson’s ratio, Hooke’s law

shear stress 32, 53, 55, see also stress
– critical resolved 178–183, 189
– fibre interface 306–312
– resolved 178–183, 189

shear stress (fibre interface) 321, 323
shift factor 269
short crack see microcrack, initial

crack, crack
short fibre see fibre – short
short-range order 8
short-range order interaction 204, 205
shot peening 341
Si3N4 see silicon nitride
SiC see silicon carbide
side group 25, 259, 285, 288, 289
sif see stress intensity factor
silica glass see glass
silicon 16, 406
– precipitate 209
– Young’s modulus 40, 55, 56

silicon carbide 16, 40, 238, 316, 322,
323, 365, 386

– fatigue 355
– matrix 323

silicon nitride 16, 73, 145, 229, 249, 250
– crack propagation 236, 250
– fatigue 363
– matrix 323
– reaction bonded 250
– sintered 249

silicon oxide 17, 22
silk 281–284
silky fracture see dimple fracture
silver 399
single crystal 14
– creep 402, 406
– dislocation density 185
– elasticity 55, 57, 59
– theoretical strength 165
– yield criterion 178, 181, 182, 410,

431
– yield strength 189

single-phase alloy 147, 206, 215, 216

single-phase region 215, 216, 254,
469–471, see also single-phase
alloy

singularity 132, 412, 434, 473, 475, 476,
480, 481

sintering 228, 249
sintering aid 229, 249, 250
SiO2 see glass, silicon oxide
sliding see dislocation – movement,

chain molecule – mobility, grain
boundary sliding

slip 113, 172–174, 414, 436, 437, see
also dislocation – movement

slip casting 228
slip direction 173–184, see also slip

system, dislocation – movement
slip-line theory 99
slip plane 173–184, see also slip

system, dislocation – movement
– secondary 193

slip system 173–184, 193, 200, see
also slip direction, slip plane,
dislocation – movement

– basal 178
– body-centred cubic 177
– face-centred cubic 175
– hexagonal 178
– prismatic 178
– pyramidal 178
– secondary slip plane 193
– twinning 223

Smith’s fatigue strength diagram 366,
367

snail 327
sodium 4, 18
sodium chloride 17, 22
– binding energy 18, 407, 424
– bond length 408, 424
– density 408, 425
– fracture toughness 412, 434
– Young’s modulus 55, 408, 425

softening 78, 79, 207
– cyclic 339, 369
– polymer 276, 280

solid solution 203–206, 216, 469, 471
– ductility 206
– interstitial 204–207, 221, 403
– substitutional 204, 205
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solid solution hardening 203–206, 216,
403

solidification 57
– directional 57, 59, 403
– preferential 57

solubility 205, 206, 215, 469, 471
– complete 471
– partial 471

solubility gap see miscibility gap
solution heat treatment 214, 215
solvent 228, 292–293
Space Shuttle 324
specific surface energy see surface

energy
specific volume 260, see also density,

free volume
spherulite 29
spider silk see silk
spring-and-dashpot model 265, 269,

417, 421, 441, 449, 450, see also
four-parameter model

spring element 264, 417, 421, 441, 449,
450

ssn see silicon nitride – sintered
stabiliser (ultraviolet) 293
stable crack propagation see crack

propagation – stable
stacking sequence 13, 178
standard see astm. . . , din. . . , en. . . ,

iso. . .
state 465, 467
– metastable 219, 232, 234, 252, 316,

403, 471
– temperature dependence 468–472

static fatigue 345
stationary crack 129
statistical fracture mechanics see

Weibull statistics
steady-state creep 383, 388–389, 392
steel 5, 324, 360, see also austenite,

iron, ferrite
– corrosion resistance 217
– crack propagation 354
– creep 386, 405
– creep rupture strength 406
– critical crack length 145
– dual-phase 210
– ductility 222
– extrusion 341

steel. . .
– fatigue 352, 355, 360, 362, 363, 371
– Hall-Petch constant 202
– hardening 218–223
– hardening exponent 83
– heat treatment 222
– metastable 219, 234
– service temperature 386
– solid solution 206
– solid solution strengthening 205
– stress corrosion cracking 150
– stress-strain diagram 73–81
– twinning 225
– Weibull modulus 238
– work hardening 199
– yield strength 73, 413, 435
– Young’s modulus 40

steel-reinforced concrete see ferrocon-
crete

stent 223
stiffness see also elasticity, Hooke’s

law
– notched specimen 127

stiffness tensor see elasticity tensor
stored elastic strain energy see

elasticity – energy
strain 34–37, 39–57, 64–68, see also

deformation
– direct see normal strain
– elastic 39–57, 69, 71–73, 75, 135,

151, 155, 158, 159, 361
– measurement 75
– nominal 64–66, 73, 126, 410, 429
– normal see normal strain
– plastic 64, 69, 70, 72, 80, 94, 97–108,

125, 128, 276, 345, 361, 373
– shear 36
– technical see strain – nominal
– thermal 58, see also thermal

expansion
– time dependent see viscoelasticity,

viscoplasticity, creep
– true 64–66, 77, 410, 429, 431

strain ageing 207–209
strain-controlled experiment see

experiment – strain-controlled,
experiment – displacement-
controlled

strain-cycle diagram 360, 361
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strain hardening see work hardening
strain hardening exponent 81
strain increment 82, 94, 103
strain rate 95, 103, 114, 116, 195, 196,

208, 266–268, 275, 279, 383–385,
392, 393, 396, 400, see also creep
rate

– dislocation creep 389
– plastic 93–103, 105

strain ratio 336, 357
strain state
– plane 47, 136, 138, 156, 170
– uniaxial 50

strain tensor 35–37, 68, 410, 426, 431
– constant volume 182
– Green’s 67, 410, 431
– incompressibility 182
– symmetry 36

strength 68–81, 84–93, 110–118, 142–
144, see also yield strength, tensile
strength, flow stress, fracture
toughness, cleavage strength

– ceramic 70, 72, 110–118, 227,
229–255

– composite 303–315, 318–322, 326,
419, 446

– inert 235, 417
– material data 146
– metal 69, 70, 72–81, 84–92,

110–118, 165–225
– polymer 70, 72, 92–93, 110–118,

263, 265, 274–284, 289–290
– solid solution 206
– temperature dependence 229
– theoretical 165, 166, 229, 399, 414,

436
– wood 326

strengthening by cold-working see
work hardening

strengthening mechanisms
– age hardening see precipitation

hardening
– ceramic 248–255
– composite 295–331
– crack bridging 230, 255, 309, 345,

348
– crack deflection 230, 249, 251, 255,

309, 345
– creep 402

strengthening mechanisms. . .
– defect size 248, 249, 296, 303
– dispersion strengthening 209,

217, 248, 295, 298, 404, see
also precipitation hardening,
particle strengthening

– fibres 295–331
– grain boundary strengthening

200–203, 221, 321, 344, 402,
415, 438

– hardening 218–223
– metal 198–223
– particle strengthening 209–218,

230, 249, 252, 255, 295, 298,
345, 415, 438, 468, see also
precipitation hardening, dis-
persion strengthening, Orowan
mechanism

– polymer 289–292
– precipitation hardening 192, 209,

211–217, 371, 389, 403, 406,
415, 438, see also particle
strengthening

– solid solution hardening 203–206,
216, 403

– temperature resistance 402
– transformation toughening 252–

255, 345, 468
– work hardening 78, 97–103, 198–

200, 210, 341, 371, 402, 415,
437

stress 32–34, 39–57, see also stress
state

– axial see stress – longitudinal
– circumferential 78, 113, 123, 127,

128, 233, 413
– deviatoric 87, 95, 410, 431
– direct see normal stress
– effective 189, 193, 194, 200
– equivalent 84, 116, 123, 142, 196
– – Mises 91, 104
– – Tresca 88
– hydrostatic 87, 90, 92, 170
– longitudinal 78, 127, 413
– net-section 120, 124, 376
– nominal 69, 70, 73, 77, 121, 126, 140
– normal see normal stress
– radial 78, 113, 123, 124, 127, 233,

413
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stress. . .
– shear see shear stress
– thermal 58, 421, 450
– true 69, 74

stress amplitude 334, 361, 366, 369,
419, 447

stress concentration 119, 338
stress concentration factor 119–121,

122, 124, 377
– fatigue 375
– notch root 380
– shaft 121, 122, 411, 433

stress-controlled experiment see
experiment – stress-controlled

stress corrosion cracking 118, 150–151,
see also corrosion, intercrystalline
corrosion, fracture – corrosion
induced

stress-cycle diagram see S-N diagram
stress exponent see creep exponent
stress field see notch – stress state,

crack tip – stress field, stress,
dislocation – stress field

stress gradient 376
stress-induced phase transformation

232, 252, 345
stress intensity factor 131–134, 142,

143, 146–148, 155, 235, 344, 349,
412, 434

– cyclic 350, 354, 356, 373, 374, 380
– ductility 138
– fatigue see stress intensity factor

– cyclic, stress intensity factor
– maximum, stress intensity
factor – mean, fatigue-crack-
growth threshold, fatigue –
fracture mechanics

– maximum 352
– mean 351, 352, 354
– threshold see fatigue-crack-growth

threshold
stress-life diagram see S-N diagram
stress range 335, 350, 354, 419, 447
stress ratio see R ratio
stress relaxation see relaxation
stress reversal see cycle
stress space 85, 98

stress state see also stress
– multiaxial 42, 43, 66, 68, 78, 83, 84,

116, 123, 127, 279, 305, 348
– plane 85, 88, 92, 93, 132, 136, 156,

410
– triaxial see stress state – multiaxial
– uniaxial 50, 55, 91, 104, 112, 124,

127, 181, 279, 362, 426, 435
stress-strain diagram 68–83, 124, 199,

231, 232, 264, 418, 443
– approximation 81
– ceramic 70, 72
– composite 304, 311
– cyclic 369–373
– hysteresis 319, 339, 340, 345–347,

372, 373, 418, 443
– isochronous 265, 266
– isotropic hardening 101
– metal 70
– notch 124, 126
– perfectly plastic 100
– polymer 70, 72, 265, 266, 276, 280
– power law 81
– real 73
– stability 81
– thermoplastic 276, 280
– Young’s modulus 69, 73, 97

stress tensor 33, 452, 475
stress trajectory 119
stress trajectory density 119
stretch zone 162, 163, see also crack

tip – plasticity
striations 343, 344
subcritical crack propagation 150–

152, 234–235, 242–243, 345, 417,
440

substitutional atom see also solid
solution, substitutional solid
solution

substitutional solid solution 204, 205,
see also solid solution

sulfur 20
summation convention 453
superalloy 59, 192, 206, 324, 385, 389,

403, 404, 421
supercooling 470
superelasticity 222
supersaturation 206
surface crack 139, 140, 142
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surface energy 136, 138, 292, 403, see
also interface energy

surface integral 473, 475, 478, 479, 483
survival probability see probability of

survival, Weibull statistics
swelling 292, 320
sx see single crystal
symmetry 8, 9, 42, 50
syndiotactic see tacticity

tacticity 288–289
tantalum 404
Taylor factor 182–184, 199, 202, 410,

415, 431, 437
Taylor series 38
technical strain see strain – nominal
technical stress see stress – nominal
Teflon see polytetrafluor ethylene
tellurium 20
temper rolling 208
temperature (homologous) 383, 385,

402
temperature dependence
– ceramic 229
– creep mechanisms 396–400
– creep rate 384, 392, 394, 395
– elasticity 60–62
– fatigue of ceramics 364
– metal 195
– polymer 265, 270, 271, 284, 291
– state 468–472
– viscosity 227

temperature resistance see also melt-
ing temperature, glass transition
temperature, creep, temperature
dependence

– ceramic 227
– composite 319–321
– fibre 324
– polymer 284–289
– strengthening mechanisms 402

tempering 222
tensile strength 70, 73, see also yield

strength, strength, flow stress
– aluminium oxide 250
– ceramic 70, 72, 117, 229, 250
– composite 303–313, 318, 320, 322,

419, 446
– concrete 298

tensile strength. . .
– fibre 316, 317
– metal 70
– polymer 70, 72, 92, 93, 290

tensile test 68–81, 370, see also
stress-strain diagram

– ceramic 70
– fracture 79
– metal 70
– notched specimen 125–128
– polymer 70, 266

tensor 451–460
– component matrix 452
– contraction 453, 455
– coordinate axes 453
– coordinate transformation 456
– determinant 457
– eigenvalue 458–459
– eigenvector 458
– Einstein summation convention

453
– field 459
– free index 454
– index notation 453
– Kronecker delta 457
– notation 452
– order 451–452
– principal invariant 458–459
– product 453, 455
– rank see tensor – order
– scalar 452
– strain 35–37
– stress 33, 452
– summation convention 453
– symbolic notation 452
– trace 457
– transformation matrix 456
– transposing 457
– unit tensor 457
– unit vector 453

termination reaction 24
tertiary creep 384, 392, 400, 401
tetragonal crystal 9, 10, 54, 252
tetragonal zirconia polycrystals 254
texture 54, 57, 318, 403
theoretical strength 165, 166, 229, 399,

414, 436
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thermal activation 185, 194, 196, 257,
258, 266, 267, 373, 387, 401, 405,
414, 437, 465–466

thermal conductivity 7, 323, 346, 348,
365

thermal energy 61, 193, 259, 260,
262, 392, 465, see also thermal
activation, activation energy

thermal expansion 58, 59, 61, 209, 230,
251–253, 300, 321, 323, 324, 421,
422, 450

thermal expansion coefficient see
coefficient of thermal expansion

thermal fatigue 346, 364
thermal stability see temperature

resistance
thermal strain 58, 421, 450, see also

thermal expansion
thermal stress 58, 421, 450
thermodynamics 465–472
– laws of 466

thermoplastic 26, 28, 257–293, 299,
346, see also polymer

– amorphous 25, 26, 257, 260, 269,
270, 275

– branched 289
– ductility 263, 275, 284, 290–292
– elasticity 270, 271, 275
– glass transition temperature 260–

262, 265, 268, 270, 272, 275,
284–286

– matrix 299, 319
– plasticity 275, 281
– semi-crystalline 28, 261–263, 273,

281, 284, 286–290, 347
– service temperature 284–289
– stress-strain diagram 276, 280

thermoset see duromer
three-parameter Weibull distribution

241
three-point bending specimen 152
TiC see titanium carbide
time-dependent deformation see

damping, creep, viscoelasticity,
viscoplasticity

tip (tensile test) 79, 111, 112
titanium 5, 202, 222, 331, 404
– critical crack length 145
– fatigue 355, 360, 362, 363

titanium. . .
– matrix 322
– service temperature 386
– Young’s modulus 40, 55

titanium carbide 40, 55, 56, 298
titanium nitride 250
tooth paste 329
toughness see ductility, plasticity,

fracture toughness
trace (tensor) 457
transcrystalline fracture 112, 115, 400
transformation matrix 426, 456
transformation speed 219
transformation toughening 252–255,

345, 468
transgranular fracture see transcrys-

talline fracture
transient creep 383, 388–389
transition (secondary) 271, see also

relaxation process
transposing (tensor) 457
transversal contraction 39, 50, 53, see

also Poisson’s ratio
transversal isotropy 54, 57, 303
tree 325
Tresca see yield criterion – Tresca,

equivalent stress – Tresca
triaxial stress see multiaxial stress
triclinic crystal 9, 10, 54
trigonal crystal see rhombohedral

crystal
tropocollagen 329
true strain see strain – true
true stress see stress – true
Tsai equations see Halpin-Tsai

equations
tungsten 55, 206, 209, 322, 323, 402,

403, 405
– creep 399
– Young’s modulus 40, 55, 56

tungsten carbide 40, 298
turbine blade 58
turbine shaft 333, 349, 386
– service temperature 388

twin band 223, 224
twin boundary see twinning plane
twin crystal see twinning
twinning 223
twinning plane 223
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two-parameter Weibull distribution
see Weibull distribution

two-phase microstructure 209, 215
two-phase region 470, 471, see also

two-phase microstructure
tzp see tetragonal zirconia polycrys-

tals

uhcf see ultra-high-cycle fatigue
ultimate number of cycles see limiting

number of cycles
ultimate tensile strength see tensile

strength
ultra-high-cycle fatigue 360
ultrasonic testing 144, 349
ultraviolet light 292, 293
ultraviolet stabiliser 293
underageing 213, 371
undercooled γ phase 219
undercooled melt see amorphous,

glass
uniaxial strain 50
uniaxial stress 50, 55, 91, 104, 124, 127,

181, 279, 362, 426, 435
unit cell 8, 11, see also crystal
unit tensor 457
unstable crack propagation see crack

propagation – unstable
upper yield strength 72, 73, 207
uts (ultimate tensile strength) see

tensile strength
uv stabiliser see ultraviolet stabiliser
uys see upper yield strength

vacancy 15
– concentration 390, 393, 394
– concentration gradient 391, 394
– current density 389, 391–394
– density 196, 466
– diffusion 196, 385, 389, 391–394,

402
– diffusion constant 391
– enthalpy of formation 390–392,

402, 466
– migration 391, 402
– sink 389
– source 389

valence electron 6
valency 4, 16, 18, 19, 21

van der Waals bond see bond – van
der Waals

vanadium 405
vanadium carbide 405
vector 451
vector field 459, 473
vertebrate 328
very-high-cycle fatigue 360
vibration
– dislocation 195
– resonance 333

Vickers hardness test 109
viscoelasticity 263–269, 271, 319, 320,

346, 347, 417, 418, 441, 443
viscoplasticity 63, 263, 265, 266, 269,

346, 383–406, see also creep
viscosity 227, 263, 265, 272, 281
– temperature dependence 227

void see vacancy, porosity, cavity,
craze

Voigt model see Kelvin model
Voigt notation see Hooke’s law – Voigt

notation
volume see also incompressibility
– free 262, 268, see also specific

volume
– specific 260, see also free volume

volume change (deformation) 75, 82,
87, 97, see also incompressibility

volume diffusion 392
volume fraction 210–212, 295
– fibre 300, 301, 304, 305, 311, 314,

316, 320, 322, 327, 419, 445, 446
– hydroxyapatite 330
– second phase 389, 404

volume integral 473, 483
von Mises see yield criterion – Mises

water 20, 118
WC see tungsten carbide
wear 119, 345
wear resistance 209, 250, 251, 298, 324
wedge-type pore 400
Weibull distribution 237, 244
– three-parameter 241

Weibull equation 240
Weibull modulus 237–242, 323
– life time 242
– measurement 243–245, 415, 438
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Weibull statistics 236–245
– ceramic 236–245, 415–417, 439,

440
– fibre 312
– measurement 243–245

welding 118, 130, 200, 205, 216
whisker 166, 185, 322–324
Williams-Landel-Ferry equation 269
wire drawing 199
wlf equation see Williams-Landel-

Ferry equation
Wöhler diagram see S-N diagram
wood 40, 325–327
work see energy
work hardening 78, 97–103, 198–200,

210, 341, 371, 402, 415, 437
– aluminium 200
– ductility 199
– perfectly plastic 86
– steel 199

woven fibres see fabric

X-ray testing 144, 220

Y2O3 252
yarn 297
yield criterion 84–93, 99, 103, 142
– aluminium 410, 431
– conically modified 93, 411, 432
– isotropic hardening 100
– isotropic material 84–85, 88–92
– metal 86–92
– Mises 86, 90–93, 96, 102, 104, 128,

410, 413, 431
– parabolically modified 92, 411, 432
– polycrystal 182–184
– polymer 92–93, 279, 411, 432
– shear experiment 92
– single crystal 178, 181, 182
– Taylor factor see Taylor factor
– Tresca 88–89, 90, 92, 96, 116, 410,

413, 431
– uniaxial 84
– von Mises see yield criterion –

Mises
yield cylinder see yield criterion –

Mises

yield point (apparent) 70, 71, 73,
207–209, see also yield strength,
flow stress

– polymer 72
yield point phenomenon 207–209, see

also yield point (apparent)
yield strain 72
yield strength 69, 73, 93, 116, 117,

142–144, 180, 182–184, 195, 202,
413, 416, 435, 439

– aluminium 192, 200, 206, 214, 380,
410, 431

– increase see strengthening
mechanisms

– lower 72, 73, 203, 207
– material data 146
– measurement 70
– metal 69, 72
– nickel 192
– polymer 72, 92, 263, 265, 279, 280
– precipitation hardening 214
– solid solution 206
– steel 413, 435
– temperature dependence 195
– upper 72, 73, 207

yield surface 85–93, 95, 96, 98, 101
– Mises 90
– parabolically modified 93
– Tresca 89

yielding see plasticity, yield strength
Young’s modulus 39–42, 46, 51,

73, 230, 255, 475, 476, see also
elasticity, Poisson’s ratio, shear
modulus, Hooke’s law

– aragonite 327
– bone 330
– composite 320, 419, 446
– direction dependence see elasticity

– orientation dependence
– duromer 275
– elastomer 275
– implant 330
– increase 41
– material data 55, 250, 275, 316,

408, 425
– measurement 69, 73, 97
– microcrack 232, 251
– nacre 327
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Young’s modulus. . .
– orientation dependence see elastic-

ity – orientation dependence
– polymer 290
– stress-strain diagram 69, 73, 97
– temperature dependence 60–62,

270, 271, 291
– thermoplastic 275
– time dependence 263, see also

relaxation modulus, creep
modulus, viscoelasticity

– two-phase material 209
ype (yield point effect) see yield point

phenomenon, apparent yield point
ys see yield strength
yttria see yttrium oxide
yttrium oxide 252
yttrium oxide-zirconium oxide phase

diagram 253

zero-to-compression stress 336
zero-to-tension stress 336
zinc 55, 56
zinc blende 22
zirconia see zirconium oxide
zirconia-toughened alumina 254
zirconium oxide 16, 249, 251, 252–255
– critical crack length 145
– fatigue 355
– metastable 252
– partially stabilised 254, 345
– Young’s modulus 40

zirconium oxide-yttrium oxide phase
diagram 253

ZnS see zinc blende
ZrO see zirconium oxide
ZrO2 see zirconium oxide
zta see zirconia-toughened alumina




